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ABSTEALT

Numerical models are required (o make calculations of the distributions
of potential and the flows intc excavations for most mining related
groundwater flow problems. The formulation of such probiems using the
boundary integral equation method end the implentation of this for-
mulation in 2 computer program, GFLOW, are described. This program is
designed to soive problems involving plane, unconfined flow in homo-
geneous rock masses having anisctropic permeabitities determined, for
example, by flow through major joint zets. An iterativa procedure is
developed for determining the jocation of the phreatic surface in the
steady state condition. Although boundary elements with quadratic
functional variation and advenced numerical procedurzs are used, GFLOW
has been designed so that it can be used with computer systems as small
as 8 64K byte microprocesszor, given a hard disc on which to hold
scratch files. The sclution s given for an illustrative problem
involving flow through an anisotropic rock mass into @ singie horse-
shoe shaped tunng!.

IRTRODUCT I ON

in feasibility and pianning studies for mining operations in water-
bearing ground, It !s important to be able to make predictians of the
likely rates of groundwater inflow into the mining excavations and of
the positions of the phreatic surface at various stages of mining. Such
predictions permit estimates to be made of the costs of draining the
mine, the copacities of the pumping equipment required, the likely
extent of operational difficuities caused by water inflows, and the
effects of drawdown on surface instailations and groundwater supp!ies.

In order to be able to make these predictions, knowledge is required of
the regional gechydrology, including initial plezometric ievels and re-
charge sources, the geological structure and hydraullc characteristics
of the rock mess surrounding the mine, snd the geometry of the pro-
posed excavations. Most Importantly, a method of anaivsis ls required.
Many cccurrences of waeter In mines are extremely difficult to predict
and snalyse. These Include Inrushee from ceverns in carbonate rocks
or from isolated pocke:s of water-storing rock and flows throu
conduits or from sources that are st least pertially man-made %?]
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In general, however, flows will be through the primary permeability of
the rock itself, through the secondary permeability due to the joints in
the rock mass, or through major geological conduits such as faults and
dykes. Inflows through, or controlied by, major geological conduits
have caused serious mining problems in the past D,Z]. Provided their
existence, hydraulic characteristics and recharge sources can be pre-
determined. flow through such features can be analysed using the

finite clement method ?3]. for example.

Excluding special features such as those referred to above, the seepage
of water in a rock mass will be typically through the joints or dis-
continuities rather than through the blocks of intact rock (4]. Only in
very porous rocks, such as some sandstones and limestones, will the
primary permeability of the rock be dominant. On the scale of a mine,
the joints will be very numerous, and so it will be impracticable to
determine their distributions and individual characteristics and to
consider the flow through each of them in the analysis. [f the joint
spacing is small compared with the dimensions of the problem domain, it
is acceptable to treat the rock mass as an equivalent continuum with
permeabilities such that, in the large, the hydraulic characteristics of
the continuum and the jointed rock mass are equivalent[4,5] . Generally
the permeability of the equivalent continuum will be anisotropic and it
may be necessary to treat the rock mass as being composed of a number

of regions each with different characteristics. In the analysis
presented herein, the rock mass may be anisotropic but is considered
homogeneous .

To calculate the variation of potential through the continuum and the
flow across any part of its boundary, it is necessary to solve a boundary
value problem. For some simple problems, generally involving cylindrical
excavations, closed-form solutions have been obtained for confined and
unconfined f!ows[S]. These solutions have been adapted to give simple,
and approximate, predictions of inflows into underground excavations

[6, 7J. In general, closed-form solutions can only be obtained for
cases involving linear flow laws .and excavation geometries and boundary
conditions which can be described by simple functions. 1In other cases,

numerical methods must be used.
NUMERICAL METHODS

Boundary value problems of groundwater flow are usually solved by finite
difference or finite element methods(B.S], in which it is necessary to
define a grid or mesh throughout the region of interest, and to construct
and solve a system of simultaneous equations in terms of unknowns associated
with node points distributed both inside the rock mass and on its surface.
If there is a phreatic surface, this system must be solved many times
during an iterative calculation of the location of that surface. Since
the order of the system is large, computing costs are high. In addition,
the governing partial differential equation is not exactly satisfied

at each point of the continuum, and so the solution obtained corresponds
to a residual distribution of sources and sinks throughout the rock mass.

Boundary integral methods are alternatives to finite differences and fin-

ite elements, in which the partial differential equation is transformed
to a boundary integral equation IO}. To solve the integral equation, a
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mesh of elements is defined on the surface only of the region of interest,
and a system of equations in terms of unknowns assoclated with nodes on
the surface only is constructed and sclved. The system of simultaneous
equations is smaller, and the solution obtained satisfies exactly the
governing partial differential equation at every point of the continuum,

The integral equation

Let us consider the three dimensional problem. Let a(y) and B{y) be
arbitrary twice continuousiy differentiable potential flelds, and let
vi{a) and v;(B) be the corresponding fluid velocities. Then by making
suitable substitutions in the divergence theoremf_!QL it can be shown

that
v]{u(y) 2;—'?;-@-)- - g{y) %359-)— vy = /(u(y) vg{B) - B{y) vgla)},

S ngly) asy m

where S is the surface of the region V, and ng(y) Is the unit outward
normal to 5 at the point y. Equation (1) is analogous to Betti's
reciprocal theorem of elasticity[10], and, for an isotropic continuum
of unit permeabiiity, reduces to Green's symmetrlic identity. Let us
take a{y) to be the solution u{y) of the boundery value problem, and let
8(y) be the potential U{x,y) which would arise in sn infinite region if
there were a unit source of fluid at the point xon $. in order to
satisfy the conditions of differentiabiiity, let us exclude the sing-
ularity of U(x,y) st x by writing equation (1) for the region V « v{x,e)
where v(x,e) is that part of V which 1ies within a sphere of radlus ¢
centred at x (see Fig.l), Then because u(y) and U(x,y) satisfy the
governing partial differential equstion everywhere in V - v(x,c} the
volume integra) vanishes and

/(u(y) v (W) = Uix,y) vg(u)} ngly) dSy = 0 (2)
§-S(x,e) + s{x,e)

where (see Fig.l) S(x,e) is that part of S which iles within the sphere
of radius ¢ and s{x,e) is that part of the surface of the sphere ic
jies within V. Now let € ~ 0. It can be shown that, in the limit |10},

clx) ulx) + [T(x.y) stnasy = fob)tiyiasy 3)
S

where t(y) and T{x,y) are the inflows across S at y due to the potential
fields u(y) and U(x,y), and c(x) is a known function of x. I|f the tangent
plane is continuous 8t x, c(x) = §. Equation (3} is the boundary

integral equation of the direct formulation. if either uly) or t{y} is
known at every point y of §, then this equation can be solved for which=

ever of u(y) and t{y) is unknown. If results are required at poinis x
in V, they can then be computed using the results
a) = foteyeiasy - [ Tamutnes, ()
S
and
vi{x)= ]D|(x.y)t(y)dsy - /Sl(x.y)u(y)dsy (5)
S H
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B

which, llke the boundary integral equation, are derived from equation (I},

For the plane problem, the analysis is the same as for three dimensions,
except In that the region vix,e) is taken to be part of a disc of radius
¢ rather than of & sphere. For the plane problem In which the principa:
directions are parallel with the coordinate axes,

i{ - -—-Lm .}.
Gix,y) vk by tog o
{8}
Ti{x,v}e __1;_15___5_1_,,( ) 5
2 &ik'
where k are permeabilitles, xg and yg sre the coordinates of the paints
x and y, ng(y) Is the unit oumurd normal te S at y, and

. Axa - 150 o
= /.*..3.:;_ ‘ (7
in equation (%} e o2 ; e
x, o~k e [,y
by dx v) Yoaxg tutey)i wo aum oon i) {8}
3 {5 ST G

Siiny) = exy Be {(T{x,¥)}

THE GROUMDWATER FLOW PROBLEM

Equations (3), (&) and {5) sre valld !f $ is tsken to be the boundary of
that part of the rock mass which ls saturated, this being the rotk below
the phreatic surface. The location uf the phreat!c surface is not krown
in advance, and so the solution ef a problem of groundwater flow (e an
itérative process. One method e, il‘j is to solve squation (3} on the
assumption that the rock ls saturated everywhere, compute a first
estimate of the phreatic surface {e.g. the surface on which potentis}
equals altitude), solve equation (3) for the rock mess below that
surface, compute a second estimate snd so on untll changes in the
computed locstion of the phreetic surface are sufficientiy smail, The
repeated equation solution Is expensive; worse, the aigorithm is not
robust becsuss 1f the computed phrestic surface Intersects some other
part of the boundary S, zuch as the crown of & tunnel, then the

intagral eguation is no longer soluble. An alternstive lterative methos
in which the boundary § does not move from its inltlal position is thers
fore proposed here.

Let us take 5 to be the boundary of the entirs mase of rock under con-
sideration, including rock that may be dry, and fcr the purpose of
writing squation (3) suppose that over the part $} of § which may be wes
or dr{ inflow t(y) s known snd potentisl uly} unknown. Let u(0){y}
end ti0) (y) be the nth lterated valups of potential snd inflow at y.
The iterstion is begun by taking 127 to the zero on !, and so} ,
equation (1). Let us denote by §4." that part of $! on which (y)
Is tess then altitude, and by S, (N} the rest of §!. Below 34", the
nth lterated phreatic surface Is taken to be the surfacs on chh
computad potentiz! equals sltitude. Durling the lteration, the followin
adjustments ars meds to Inflew on §3. At & pelnt y on § f=1) be low whw
there is a polut on the {a=1)th lEera&ed phreatic surfece,

2" (y) @ g lom 1%;_&”(?\ ﬁ(vi

o
5
e
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where s("'))(y) is the computed inflow across the (n-1)th iterated
phreatic suu('f!c’ at the point below y, and k is a rejaxation factor.
For y on S,

) e min (e ) - kaein)] (10)

where s {y) are the adjustments to inflow on ?(" l)t:hat would be requlred
to set potential equal ’o altitude on S‘,, n-1 The lteration Is ter-
minated when Inflow s' ' {(y) across t?e phreatic surface, and dlfferences
between potential and altitude on Sy n) , are sufficiently small,

‘Wumerical analysis

Let us represent t he boundary S by p elements Sp, each with three nodes
(see Fig.2). tet xj{b,c) u(b,c) and t(b,c) be cartesian coordinates of,
and potential and inflow at, node c of element §,, Then the coordinates
of, and potentiai and infiow at, an arbitrary point of element S are
given in terms of the shape functions NC(L) of the Intrinsic coordinate
€ by

xi (b,c)= ch NE(E)x; (b,c)

M A LGN an
=
3

tib,c) = T N(g)t (b,c)
c=]

where iVIO]
Mi(E) = & £(esl)

N2(g) = 1- g2 ' (12)
N3(g) = % efe-1)

and ¢ varies from -1 to +1. Let there be a total of q nodes x® on §,
the number of node c of element Sp being d(b,c). Then a system of
simultaneous equations in terms of potential and inflow at these nodes,
approximating to the boundary Integral! equation, may be written by
taking the point x of equation (3) to be located at each of the g
nodes in turn and substituting the parameteric representations of
equation (11):

cxMulad) + § 2ol oSy /T(x‘.y(t:))Nc(C)J(E) de
b=l c=|
Sp
P
= I I t{b,c) [u(x®,y(€)}) NC(&)J(E) dE (13)
b=l ¢=1
Sp

where J(£) is the jacobian ds/df where s =arc length, and the super-
script a ranges from | to q. The integrals of kernel-shape function
products appearing in equation {13) may be evaluated using Gausslan
quadrature formuiae UO]. and known values of potential and inflow
substituted to yield a system of q simultaneous equations in terms of
q unknown nodal vaiues, one per node. Where potential is given on
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both elements adjacent to a corner of the region under consideration,
certain approximations must be made to reduce the number of unknowns
associated with the node at the corner to one, but the resulting loss of
accuracy is negligible except near the corner.

At the nth :teratnon. let us reaynnge the numbering of the nodes so

that nodes u(sndi s! and on S( are numbered from | to r, nodes inside
s! and on LA are numbered r+¢l to s, and nodes inside S-S or on the
boundary between S! and S-S! are numbered from s+l to q. Then equation
(13) may be re-written

All A2 Apg ! uy,(,n) i By, By B3 tf,"’

|
A1 Az Ay, U.g") = | 821 Byy By tc‘") (14)
A3y A3z A3 ( B3 B3; Baslig

-

where A and B are matrice ?f known coefficients (A.J and B;; being
Iz-matrnces} n) and t are potential and inflow at nodes ltor,
n} and td n)are potential and inflow at nodes r+l to s, and f\"and g

‘Ef unknown and known parameters at nodes s+l to q. Premultiplying by

uv((n) €1 €12 Ci3 tv(an)
“(Sn) = €21 C22 €23 tén) (15)
£ C31 C32 €33 | 9

where C=A"'B. At nodes | to r, t(“)us given by equation (10}, in which
stly) is the ad)ustmni tY)inﬂw on sin-1) required to set potential
equal to altitude on Let Aty Be the vector of adjustments at
nodes | to r. Then

€11 €12 Cy3f (At Auy
€1 C22 €237 O} =laug (16)
€33 C32 C33| j o Af

where Au, = -(u,(,"_l) - altitude) at nodes | to r. Then

Atw = Cy) Au,, (17)

At nodes r+) to s, the point at which u("-llx) equals altitude below
each node is located by a Newton-Raphson iteration in which equatlons
(4) and (S) are used to compute potential and flow. Equation () is
then used to determine the slope of the phreatic syrface. and then to
calculate the Inflow s{M~1) across it, so that t {y) can be calculated
according to equation (9).

The procedure, then, is in principle as follows:

1) set t,,( ) . tsl) 0 and compute uw(l), uél) and f(l) according
to equation (15)
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2} for no= 2,3,k ., 8) compute At from equation (17}, then !L")from
equation {10}

b

-~

locate the (n~ljth phreatic surface by Mewton-
Raphson iteration, then compute t3" from
equation (9).

compute ui“% ué")and £{" accorting to equstion

(15},
N
3} terminste the iteration when s(""1/ang Buy are scceptably small.

o

(4

FHPLEMENTATION

The aigorithm described In the praceding section is Implemented in
program GFLOW, this being & progrem designed primariiy &s a teaching and
research facitity, rather than a: e means of solving practical problems
as efficiently as possible. it is for that resson that boundary
elements with guadratic functiona! varistion are chosen instead of
Hermitian cubic cliemsats ‘Zi. Tre logic of GFLOW Is further
simplified by taking the ssme order of Gaussian quadiature formuls

for all elemants and positions of the first argument of the kernel,
rather than verying the order according to the sstimated rapidity of
variation of the integrend (10]. 8asic features of sariier progrsms for
elastostatic analysis are however retained: asbout half the code is pre-
processing, giviang the user complete freedow of node and element
numbering {the partitioning described in the preceding section is
motional}), considersble freedom of order of presentation of input data,
automatic dats genaration facilities and readily comprehensible error
messages; there is no known way of causing abnormal termination of
execution other than by providing insufficient system resources; and
the overiay structure and extenclive use of scratch files allows the
program to be run on small systems. GFLOW solves problems in which the
boundary is represented by up to 100 elements {order q of matrin { of
equation (1S} up to 200} in 16K words of LIt central memory (1 word =
60 bits), and could be converted to solve problems of nearly that size
on a 64K byte microprocessor, given a hard disc on which to hold
scrateh files. A simpiified flow chart Is shown in Fig.3, and contents
of scratch files are swwmarised in Tablas |,

From Fig. 3 it may be seen that Integrals of kernei-shape function
products appearing in equation (13) are evaluated only once. Ne

matrix inversions are carried sut, it being more economical to
factorise intc lower and upper trianguler matrices. The matrix A of
equation (14) is constructed and factorised only once. The matrix Cy,
of equation (16) is generally much smaller than the matrix A, so the
cost of constructing and factorising it once during each iteration is
usually insignificant. The most expensive operation is the Newton-
Raphson iteration for the phreatic surface performed once per iterstion.
To reduce the cost of this iteration, the location of the (n-1)th
phreatic surface is taken as the initial estimate when locating the

nth surface. For interior points x near S, substitution of the
appropriate parametric representations and use of Gaussian quadrature
formulae in equations (4} and (5} does mot give accurate results;
therefore, when u(x) and v;{x) are required for a point x near S, their
values at point further from § are calculated and the desired resulls
obtained by linear interpolation between that point and the nesrest
point to x on S. This procedure incurs the inconvenience and overhead

39
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of Jacating the nearest surface point to x, but the rout lnes developed
far this purpose are reijable and of efficiency such that the ovechead
is smell. in GFLOM, interpsiation s carried out if x Is nearer to §
than sbuut 9.7 times the length of the nearest boundsry element. if
the orders of Gaussisn formulse were choten according to estimated
rapidity of varietion of the intsgrand [10], then this distance, and
with It the errors incurred by Pirear Interpolation, could be reduced.

Exampie of mwmerical modelling

tonsider 2s exploration tunnel with @ horse-shos shaped cross-section,
sxcovated in a jninted rock mass and continuwously drained by pumping
{see Figs. 4 and §5). The tunnel is bm wide and bm high, end its floor
is 80m below ground level. There is recharge at ground level at dis-
tances greater than 460m from the centreling of the tunnel. A 1090m »
300m cross-section of rock is modelisd, the outer boundary being re-
presented by !5 elements snd that of the tunnei by 12 a3 shown in Figs.
b and S. There are vertical and horizontal Joint sets, such that the
permeabilities of the equivalent continuum are 5.2 x 10 “m/sec znd

3.78 x 10" °m/sec in the vertical snd horizontal directions respectively.
The computed inflow, sfter 10 Iterations, is 0.0039m/32c p=r metre run
of tunnel. A3 miv be sewn Trom Figs, b and 5, the phrestic surface is
computed to draw down to the crown of the tunnel.

In this sxample, convergence of the iteration was siow because at points
on the estimated phreastic surface neer the tunnel, large adju?tm ts

2f inflow 8t ground level were required to zerolse the flow si™ ' (y)
{see eqn {5)) across the ezstimated phreatic surfece. 1t is intended to
modify the itarstion so that adjustments of inflow at nodes on §' are
computed by solving a system of simultanecus equations of order 3 [see
aqn s\k};, rather than by solving 8 system ?f order r for adjustments
on 55" Hard computing adjustments an 347"1) according’ to egn (9) 23 at
present., Flow across the estimaied phrestic surface near an under-
graund opening will then be zeroized largely by adjustments of infiow

a8l nodes on the boundary of the opening, rather than st nodes at ground
lews ).

CONCLUS1OWS

it has been demonstrated that the boundary equatior method can be used
o solve probiems of unconfined flow in porous media, but as indicated
in the preceding section, the iteration for the phreatic surface must

be modified to ensure that it converges reliably. There were iwo
wiives for developing an algorithm in which the boundary element mesh is
not redefined at each iteration: to reduce computing tost, and to easure
that the computation could be aliowed to procesd to 2 conclusion with-
out the need to check periodicslly whether the problem of approaching
or Intersecting boundsries is likely to be encountered and take avoidance
action where necessary. In practice, a system of simultanecus equations
must be solved at each iteration, and the computing cost may in fact be
comparable with that of an algorithm in which the boundary eiement mesh
ix redefined. However, the algorithm described here is free of the
problems posed by intersecting boundaries, and once the iteration is
modified will operate reliably without user intervention.

G2
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The applicability of the buundsry element method to problems of ground-
water flow through rock depends upon the validity of the representation
of the jointed rock mass by av equivalent continuum. In future develop-
ments, the existing nuserical model should be intarfaced with finite
elements which will represent major discontinuities, these being dis-
continuities of relatively high permeabllity, the dimensions of which
are of the sems ordar 83 thoss of the mess of rock under conslderstion.
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7
File Contents File Contents
LIN |l integrats of kernei-shape function || LWM jupper triangular [actor of &),
products
LUM || upper triangular factor of matrix || LWL llower triangular factor of Cpy
A
LUL || lower triangular factor of matrix
A
L : c
M natrix t 012]
C21 Co2f

]

Takie 1: Scratch files created by GFLOW
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Region for which the reciprocal theorem is written,
Boundary element Sp, and shape functions.

Simplified flow chart of program GFLOW.

Boundary element mesh and computed phreatic surface.
a) Computed phreatic surface in the region of the

tunnel, and
b} computed inflow across the tunnel boundary

Reproduced from best available copy



IMWA Proceedings 1982 A | © International Mine Water Association 2012 | www.IMWA.info

which the reciorocal theorem 1n written
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at Xi( b,1)
32
] ! N(E)
i f l i
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3
NE)
Node 3 .
at x;{b,3)
E=-1  £=0  E=+]
Figure 2: Boundary element S, and shape functions.
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