Treatment of Sulphate-rich Mining Effluents with the Barium Hydroxide Process and Recovery of Valuable By-products

By C.J.L. ADLEM¹, J.P. MAREE¹ and P. DU PLESSIS¹

¹Division of Water Technology, CSIR P.O. Box 395, Pretoria, 0001, Republic of South Africa

ABSTRACT

Soluble barium salts can be used for the treatment of sulphate-rich effluents. This study compared the technical and economical feasibility of the BaCO₃, BaS and Ba(OH)₂ processes. It was shown that acid mine water from an old coal mine in the Witbank area can be effectively treated by the barium processes. The BaS and Ba(OH)₂ can directly neutralise the acid water and apart from the removal of sulphate and calcium, also remove ammonia, magnesium, manganese and other heavy metals. By-products such as NaHS and sulphur can be recovered from these processes. The Ba(OH)₂ process is shown to be technically and economically feasible.

INTRODUCTION

The discharge of industrial effluents containing high sulphate concentrations into surface waters contributes directly to mineralization and the corrosion potential of the receiving waters. It may also result in the scaling of equipment, especially if relatively high concentrations of calcium are present. Demineralization processes such as reverse osmosis can be used for sulphate removal but they are costly; hence the need for the development of alternative processes.

Other promising processes entail the chemical removal of sulphate by means of soluble barium salts such as barium sulphide and barium carbonate^(3,4,6,10,11,12). In the barium sulphide process, BaS is added to the raw wastewater, the sulphates being removed by the crystallization of BaSO₄. This BaSO₄ is then converted back to BaS through reduction with carbon at 1 000 °C. The sulphide (from dissolved BaS) which remain in the water, is stripped off as H₂S gas which is then converted to sulphur or sodium bisulphide through biological or chemical means. In the barium carbonate process, BaCO₃ is added to the raw wastewater to precipitate the sulphates in the water as BaSO₄ and the calcium as CaCO₃. This BaSO₄/CaCO₃ mixture is then treated in a kiln at 1 000 °C where the BaSO₄ is converted back to BaS through reduction with carbon and the CaCO₃ to CaO. The BaS, which is more soluble than the CaO, is separated from the CaO by leaching with water. The BaS in solution is converted to BaCO₃ by stripping H₂S gas off with CO₂. The H₂S is

4th International Mineral Water Association Congress, Ljubljana (Slovenia)-Pörtschach (Austria), September 1991 Reproduced from best available copy

converted either to sodium bisulphide or elemental sulphur in a separate stage.

Each of these processes have unique disadvantages. The barium carbonate process requires a relatively long retention time for sulphate removal due to the slow dissolution rate of barium carbonate. Precipitation of barium sulphate together with calcium carbonate, necessitates a separation stage after thermic regeneration of the barium sulphate. The barium sulphide process has the disadvantage that a low concentration of H_2S -gas needs to be stripped from the total water stream that is treated, instead of a concentrated stream of H_2S -gas.

The barium hydroxide process has recently been developed to eliminate some of the steps required in the above processes⁽⁹⁾. In this process, $Ba(OH)_2$, (as a solid) and $Ba(HS)_2$ (in solution) are produced from BaS. $Ba(OH)_2$ is used for water treatment, while NaHS is separated from the $Ba(HS)_2$, producing $BaCO_3$. The produced $BaCO_3$ is decomposed thermically to BaO and then hydrolyzed to $Ba(OH)_2$.

Benefits associated with the barium hydroxide process are:

- * No lime dosage is required as is the case with both the barium carbonate process and the barium sulphide process.
- * No H_2S -stripping is required from the total stream as is the case with the BaS process.
- * $BaSO_4$ is not precipitated together with CaCO₃.
- * By-products and $BaCO_3$ (which can be decomposed to produce BaO), can be recovered. Hydrolysis of the BaO produces more $Ba(OH)_2$ for water treatment.

The purpose of this study was to evaluate and compare the three barium processes for water treatment.

MATERIALS AND METHODS

Batch studies

A Phipps & Bird stirrer apparatus was used to study the kinetics of sulphate and barium removal from both synthetic solutions and industrial samples. Mine water samples as well as synthetic solutions were treated with the barium salts, BaCO₃, BaS and Ba(OH)₂. Treated samples were analyzed for sulphate, calcium, alkalinity, sulphide, barium and pH.

The following general procedure was followed during batch studies:

- * Addition of 500 ml sulphate rich water to the reaction beakers.
- * Addition of powdered carbon (required as reducing agent during the $BaSO_4$ reduction stage) to assist with coagulation.
- * Addition of the barium salts.
- * Stirring followed by settling of the mixtures.
- * Decanting of the supernatant.
- * Regular sampling for analyses of sulphate, calcium, alkalinity, sulphide and pH.
- * H_2S -stripping from the treated water in the BaS process, using CO₂ followed by CO₂-

4th International Mineral Water Association Congress, Ljubljana (Slovenia)-Pörtschach (Austria), September 1991 Reproduced from best available copy

stripping using air.

* Complete analyses were carried out on the raw and final water.

The mine water treated with the barium salts was obtained from two sources:

- * Water No. 4 - A mixture of underground acid mine drainage from an abandoned coal mine and effluent seepage water from an industrial plant in the Witbank area.
- Water No. 12 Acid mine drainage from an abandoned coal mine in the Witbank * area.

Thermic regeneration

Thermic regeneration of BaSO₄ to BaS was studied in a tube furnace by reducing $BaSO_4$ and a coal mixture. The molar ratio of the technical $BaSO_4$ to the carbon in the coal was 1:3. The effect of the following parameters on the efficiency of the reduction were determined:

- * Temperature: The optimum temperature was determined by measuring the amount of BaS produced against time at various temperatures.
- $CaCO_3$: Thermic studies were also performed in the presence of $CaCO_3$. * A mass of $CaCO_3$, stoichiometrically equal to that of the $BaSO_4$ was used.
- * Shelf life of BaS.

The following methods were used in the determination of the efficiency of the BaS:

Mass loss: As the reaction products of BaSO₄ reduction (Reaction 1) and CaCO₃ * decomposition (Reaction 2) are known, the percentage completion of the reaction can be monitored by loss of mass.

$$BaSO_4 + 3C \rightarrow BaS + 2CO_2 + 2CO$$
[1]

$$CaCO_3 \rightarrow CaO + CO_2$$
 [2]

- * Sulphate determination: Water soluble barium in the produced BaS was determined by measuring the amount of sulphate removed from a synthetic sulphate solution. Alkalinity - Calcium measurement: BaS in a solution of the BaS/CaO thermic *
 - product was calculated by the measurement of both parameters:

 $Alk = BaS + Ca(OH)_2$ (when all is expressed as CaCO₃)

Separation studies

In the BaCO₃ process, BaSO₄ is precipitated together with CaCO₃, necessitating a separation step after thermic regeneration. The dissolution of BaS and CaO in water was investigated.

Analytical

Standard methods as prescribed by APHA⁽¹⁾ were used in all analyses, using filtered samples.

RESULTS AND DISCUSSION

General

Tables 1 and 2 show the detailed results of treating water No. 4, and a synthetic mine water with the various barium salts (BaCO₃, BaS and Ba(OH)₂). The barium dosages applied were calculated to remove 70% of the sulphate content left in solution after neutralization with lime. Similar results were obtained in several other studies, including studies with water No. 12.

Table	1:	Effect	of	various	s bar	ium	salts	on	the	qual	ity o	f wate	er No). 4 (mine	and
	i	ndustria	al v	vater) a	after	neu	traliz	atio	n w	ith 1	342	mg/ℓ	lime	to a	pН	of 7.7

Parameter	Chemical added (mg/ℓ)									
(mg/l)	Untreated	Lime	BaCO ₃	Lime	BaS	CO ₂	Lime	$Ba(OH)_2$		
Dosage SO_4 equiv. SO_4 in sol. SO_4 removed S^2 (as S) Ca (as CaCO ₃) Mg (as CaCO ₃) Alk. (as CaCO ₃) Ac. (as CaCO ₃) pH	7 018 677 1 021 1 831 3 1	1 342 5 994 1 100 838 90 7 7	7 847 3 816 2 106 3 888 19 741 1 370 9 4	1 342 5 742 1 100 126 7 7	6 734 3 816 1 512 4 230 360 855 2 440	17	1 342 5 742 1 100 66 126 7 7	12 542 3 816 501 5 241 639 68 2 766 12 2		
% Ba efficiency		,.,	101.6	,.,	110.8	0.1	7.7	137.0		

Table 2: Removal of sulphate with $Ba(OH)_2$ from a synthetic solution

Parameter	Chemical added (mg/ℓ)						
(mg/ℓ)	Untreated						
$Ba(OH)_{2} \cdot 8H_2O$ dosage SO_4 equivalent		4 930 1 500	3 286 1 000	1 643			
SO_4 in solution	1 966	324	799 1 166	1 361			
$Ca (as CaCO_3)$	1 951	1 654	1 679	1 786			
Alkalinity (as CaCO ₃)	50	1,430	273 980	165 540			
pH % Barium efficiency	6.4	12.0 109.4	11.9 116.6	$\begin{array}{c} 11.6\\121.0\end{array}$			

The efficiency of the various barium salts for sulphate removal in water Nos. 4, 12 and in the synthetic solution are summarized in Table 3, which shows that all the barium salts (BaCO₃, BaS and Ba(OH)₂) can effectively remove sulphate from neutralized acid water.

Table 3: Efficiency of barium salts for sulphate removal.

Water	Lime			Efficiency (%))
No.	dosage (mg/ℓ)	pН	BaCO ₃	BaS	$Ba(OH)_2$
4	4 909	11.8	90. 1	90.1	134.0
4 4*	1 342	2.9	24.2	95.6	137.0
12	2 760	9.4	120.5	100.7	129.0
12 Synthetic solution♦	1 998	7.3	100.7 109.4	105.0 116.6	131.0 121.0
Average♥			103.2	101.7	132.8

♥Does not include * and \blacklozenge

In the following sections aspects specific to each of the barium processes will be addressed.

BaCO₃ process

The integrated BaCO₃ process can be presented by the following reactions:

Neutralization	:	$H_2SO_4 + Ca(OH)_2 \rightarrow CaSO_4(s \& aq) + 2H_2O$	[3]
Sulphate removal	:	$Ca^{2+} + SO_4^{2-} + BaCO_3 \rightarrow BaSO_4 + CaCO_3$	[4]
Thermic reduction	:	$BaSO_4 + CaCO_3 + 3C - BaS + 3CO_2 + CaO$	[5]
Separation of BaS & CaO	:	$BaS + CaO + H_2O \rightarrow Ca(OH)_2(S) + BaS(aq)$	[6]
H ₂ S stripping	:	$BaS + CO_2 + H_2O - BaCO_3(S) + H_2S(g)$	[7]

Equilibrium

Only water that is neutralized with lime can be treated with $BaCO_3$ as indicated in Table 3 (under $BaCO_3$). Figure 1a shows that where no lime was added, almost no sulphate removal occurred. Ca²⁺ ions in solution are necessary to precipitate the released CO₃ as

$CaCO_3$ to keep the water unsaturated with respect to BaCO₃.

Reaction rate

Figures 1a and 2a show the rate at which sulphate is removed from water No. 4 when Ba dosages equal to 70% of the sulphate content were added. BaCO₃ dosages of less than or equal to the stoichiometric concentration of sulphate require a relatively long retention time. Maree, et al.⁽¹⁰⁾ showed that an overdosage of BaCO₃ and a fluidized bed reactor can be used to minimize the retention time.

Equation 4 shows that calcium and sulphate removal will take place simultaneously. Comparing Figures 1a with 1b and 2a with 2b for waters 4 and 12 respectively demonstrate this principle.

Figure 1: Treatment of water No. 4 (mixture of mine and industrial water) with $BaCO_3$ after various dosages of lime had been applied.

Figure 2: Treatment of water No. 12 (acid minewater) with $BaCO_3$ after various dosages of lime had been applied.

BaS process

The BaS process can be used for the treatment of acid water before or after neutralization. Direct neutralization of acid water with BaS has the following benefits:

© International Mine Water Association 2012 | www.IMWA.info

Adlem et al. - Treatment of Sulphate-rich Mining Effluents and Recovery of Valuable 217 By-Products

- * A greater quantity of by-product can be recovered from sulphate as it is not precipitated as gypsum.
- * An additional treatment step, of neutralization with lime or limestone, is eliminated.
- * The disposal of sludge (mainly gypsum) is eliminated to a large extent.

When metal containing acid water is treated, metal sulphides precipitate together with the BaSO₄. Metals such as aluminium, iron and silica can form barium metal complexes which are insoluble in water, reducing the barium recovery of the process. Metal sulphides can be separated from the BaSO₄ by acid leaching or by oxidizing the sulphide of the metal sulphides to H_2SO_4 through the use of iron oxidizing bacteria. Valuable metals can be recovered from the acid solution if economically feasible.^(3,9,10)

The integrated BaS process (Route I) can be presented by the following reactions when iron containing acid water is treated directly:

Sulphate removal :
$$Fe^{2+} + 2H^+ + 2SO_4^{2-} + 2BaS \rightarrow 2BaSO_4(s) + FeS(s) + H_2S(aq)[8]$$

 H_2S stripping : $H_2S(aq) + CO_2(g) \rightarrow H_2S(g) + CO_2$ [9]
Separation : $2BaSO_4(s) + FeS(s) + H_2SO_4 \rightarrow 2BaSO_4(s) + FeSO_4(aq) + H_2S(g)$ [10]
Thermic reduction : $BaSO_4 + CaCO_3 + 3C \rightarrow BaS + 3CO_2 + CaO$ [11]

The BaS process, if operated in such a way that neutralization is carried out with lime or limestone, can produce another valuable by-product, namely pure $CaCO_3$ with a high value (up to R3 000/ton). This (Route II) process is presented by the following reactions:

Neutralization with limestone or CaCO ₃	: $H_2SO_4 + CaCO_3 \rightarrow CaSO_4(s \& aq) + CO2 + H_2O$	[12]
Sulphate removal	: $Ca^{2+} + SO_4^{2-} + BaS \rightarrow BaSO_4 + Ca^{2+} + S^{2-}$	[13]
H_2S stripping : $2Ca^{2+} + 2S^2$	$+ 3CO_2 + 3H_2O \rightarrow 2H_2S(g) + CaCO_3 + Ca(HCO_3)_2$	[14]
CaCO3 production	: $Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 + 2H_2O$	[15]
Thermic reduction	: $BaSO_4 + CaCO_3 + 3C \rightarrow BaS + 3CO_2 + CaO$	[16]

H₂S-stripping

In the case of the barium sulphide process, H_2S gas needs to be stripped from the total effluent. H_2S was stripped to values below 20 mg/ ℓ (as S) (Table 1). Residual sulphide can be removed by precipitating it with iron as FeS.

$$S^{2-} + Fe^{2+} \rightarrow FeS$$
[17]

Magnesium removal

Magnesium is also removed with the BaS process when water is not pretreated with lime. In directly treated acid water, magnesium was removed from 435 to 176 mg/ ℓ . As magnesium removal is a function of pH, not all was removed at the pH of 9.4. A higher percentage removal of sulphates with BaS will result in a higher pH and better magnesium removal.

Ba(OH)₂ process

As metal hydroxides are more difficult to dissolve than metal sulphides, the $Ba(OH)_2$ process is considered to be more suitable for treating neutralized water, than to treat acid water where metal hydroxides will precipitate.

The $Ba(OH)_2$ process eliminates the disadvantages associated with the water treatment stages of both the $BaCO_3$ and BaS processes. No long retention time is required for sulphate removal as is the case with the $BaCO_3$ process. When compared to the BaS process, no H_2S stripping is required from the total water stream. In fact, it has the unique benefit that no stripping stage is required to recover NaHS from sulphide.

The integrated $Ba(OH)_2$ process can be presented by the following reactions:

SO ₄ removal	:	$Ca^{2+} + SO_4^{2-} + Ba(OH)_2 \rightarrow BaSO_4(S) + Ca(OH)_2(aq)$	[18]
Softening	:	$Ca(OH)_2(aq) + CO_2 - CaCO_3$	[19]
Thermic reduction	:	$BaSO_4 2C \rightarrow BaS + 2CO_2$	[20]
Ba(OH) ₂ production from BaS	:	$2BaS + 2H_2O \rightarrow Ba(OH)_2(s) + Ba(SH)_2(aq)$	[21]
NaSH production	:	$Ba(SH)_2(aq) + Na_2CO_3(aq) - BaCO_3(s) + 2NaHS(aq)$	[22]
Ba(OH) ₂ production from BaCO ₃	:	$BaCO_3 + heat \rightarrow BaO + CO_2$	[23]
		$BaO + 2H_2O \rightarrow Ba(OH)_2$	[24]

The BaCO₃ produced can be converted to $Ba(OH)_2$ as indicated by reactions 23 and 24. The choice whether both $Ba(OH)_2$ and $BaCO_3$ should be used in one process, or only $Ba(OH)_2$, should be made by considering the various advantages associated with each

approach.

Disadvantages of dosing both $Ba(OH)_2$ and $BaCO_3$:

- * An additional dosing unit for $BaCO_3$ is required which makes provision for a long contact time due to the slow rate of the reaction.
- * H_2S needs to be stripped from a concentrated chemical solution.
- * A larger kiln would be required as CaCO₃ needs to be decomposed to CaO together

- with BaSO₄ reduction.
- * Provision must be made for separation of BaS and CaO.

Disadvantages of dosing only Ba(OH)₂:

A second, smaller kiln is required in addition to the one required for the reduction of $BaSO_4$ to BaS, which can decompose $BaCO_3$ to BaO.

Magnesium removal

Magnesium is very efficiently removed by the $Ba(OH)_2$ process as demonstrated in Table 1. The $Ba(OH)_2$ increases the pH of the water to approximately 12. At a pH of 11.4 and higher, magnesium precipitates completely as $Mg(OH)_2$.

Co-precipitation of CaSO₄

An interesting aspect of the $Ba(OH)_2$ process is that coprecipitation of $CaSO_4$ takes place together with $BaSO_4$ to a greater extent than in case of the $BaCO_3$ and BaS processes. Table 3 shows that on average, $BaCO_3$ and BaS remove an amount of sulphate stoichiometrically equal to the salt dosed. In the case of $Ba(OH)_2$, 32.8% more sulphate was removed than the stoichiometric equivalent of barium dosed. This can be explained by the fact that gypsum co-precipitates with $BaSO_4$ to form a complex $Ba_xCa_ySO4_{x+y}$, similar to the formation of $Ca_xMg_yCO3_{x+y}$ complexes as described by Benjamin et al.⁽²⁾. This behaviour of $Ba(OH)_2$ has the advantage that 30% less barium than stoichiometrically required, needs to be dosed for sulphate removal.

Thermic reduction of BaSO₄

The results of thermic reduction studies of $BaSO_4$ to BaS appear in Figure 3. It is clear from Figure 3 that the optimum temperature for reduction is between 1 000 and 1 100 °C. This confirms observations made previously^(5,8). More than 90% conversion of $BaSO_4$ to BaS was achieved.

Table 4 shows the efficiency of BaS production under various conditions and measured by various methods. The average efficiency determined based on mass reduction was 97.5%, compared to 90.9% in the case of indirect measurements. This can be explained by the fact that insoluble barium complexes could have formed due to the presence of impurities in the coal such as Al_2O_3 , SiO_2 or Fe_2O_3 . It appears that $CaCO_3$ has no influence on the efficiency of BaSO₄ reduction.

Table 4:	Efficiency	and stabilit	y of BaS	O_4 reduction	under	thermic	conditions
----------	------------	--------------	----------	-----------------	-------	---------	------------

	%		
Age	CaCO ₃	Method used	Efficiency
Fresh Fresh Fresh Fresh Fresh Fresh Old	Present Absent Present Absent Present Absent Absent	Mass reduction Mass reduction SO_4 removed with Ba SO_4 removed with Ba Alk - Ca Alk - Ca SO_4 removed with Ba	98.7 96.3 91.7 86.2 91.6 94.2 65.0

BaS/CaO separation

In the BaCO₃ process, a mixture of BaS and CaO is produced during the thermic treatment of $BaSO_4/CaCO_3$ in the presence of coal. As CaO is less soluble than BaS, it can be separated from the BaS by dissolution of the BaS/CaO mixture in water. Figure 4 shows the percentage of dissolution of BaS and CaO in water at different concentrations (expressed as CaCO₃).

Figure 4: Solubility of BaS and CaO at different solid to liquid ratio's

© International Mine Water Association 2012 | www.IMWA.info

Adlem et al. - Treatment of Sulphate-rich Mining Effluents and Recovery of Valuable 221 By-Products

It is shown that at a concentration of 1.5 g/ ℓ , 54% of the CaO is in solution, against only 1,3% at a concentration of 31 g/ ℓ . In the case of BaS, there is no decrease in the percentage of BaS that dissolves in the range 1 to 30 g/ ℓ . These results confirm the feasibility of separating BaS and CaO using their different solubilities, as suggested by Trusler⁽¹¹⁾.

CONCLUSIONS

Sulphate removal

All the barium processes (BaCO₃, BaS and Ba(OH)₂) can be used for complete removal of sulphate provided that the water is neutralized with lime. In the case of the BaS and Ba(OH)₂ processes, acid water can be treated directly with the barium salts without neutralization. These processes also remove ammonia, magnesium, manganese and other heavy metals as a result of the high pH that is achieved prior to CO₂ treatment. The Ba(OH)₂ process causes significant coprecipitation of CaSO₄, improving sulphate removal by 30% above the other processes.

By-products

Sulphur can be recovered from the H_2S produced in all the processes. In the BaS process, H_2S need to be stripped from the total water stream treated. In the BaCO₃ and Ba(OH)₂ processes, H_2S needs to be stripped from a concentrated BaS solution. NaHS can also be produced in all of barium processes. In the BaCO₃ and BaS processes, the H_2S stripped from the water with CO₂ gas, needs to be selectively absorbed into a NaOH solution. In the Ba(OH)₂ process, no stripping of H_2S is required and therefore, it is the most suitable process should NaHS production be of a high priority due to its high value. In the case of the BaS and Ba(OH)₂ processes, CaCO₃ of a high purity is produced in a separate stage after the BaSO₄ precipitation stage. The benefits of this are that a minimum BaSO₄ load is put on the kiln and that CaCO₃ with a high purity has a value of about R3 000/t.

REFERENCES

1. APHA, <u>Standard Methods for the Examination of Water and Wastewater</u>. Twelfth Edition. American Public Health Association, New York, (1985).

 Benjamin, L., Lowenthal, R E. and Marais, G.v.R. Water SA. Vol. 3, (3), p. 155-165 July (1977).
 Bosman, D.J., Clayton, J.A., Maree, J.P. and Adlem, C.J.L. Removal of sulphate from mine water with barium sulphide, <u>Proceedings of the Acid Mine Water in Pyritic Environments</u>, Lisbon, Portugal, 16 to 19 September (1990).
 Buckley, C.A. and Edwards, R.I. <u>Proceedings of the 5th Biennial Symposium of the Ground Water Division</u>, Geological Society of South Africa, Mintek 1989, pp. 83088 (1989).
 Dimitrova, L., Nishev, M. and Kheruvimova, <u>M. God. Nauchnoizsled. Inst. Khim.</u> <u>Prom.</u>, Vol. 11, 223-229 (1972).
 Kun, L.E. A report on the reduction of the sulphate content of acid mine drainage

by precipitation with barium carbonate. Internal report of Anglo American Research Laborarories, Project No D/3/W/1 (1972).

7. Loewenthal, R. Computer programme on the BaCO₃ process for sulphate removal. Provided by Prof. C Buckley. February (1990).

8. Lozhkin, A.F., Pashcenko, V.N. and Povar, F.V. Journal of Applied Chemistry of the USSR, Vol. 47 (5), 1031-1034 (1972).

9. Maree, J.P. and Adlem, C.J.L. Chemical treatment of water. Provisional South African patent, June (1991).

10. Maree, J.P., Bosman, D.J. and Jenkins, G.R. Chemical removal of sulphate, calcium and heavy metals from mining and power station effluents. <u>Proceedings of the 1st Biennial</u> <u>Conference of the Water Institute of Southern Africa</u>, Cape Town, March (1989).

11. Trusler, G.E., Edwards, R.I., Brouckaert, C.J. and Buckley, C.A. The chemical removal of sulphates. <u>Proceedings of the 5th National Meeting of the SA Institution of Chemical Engineers</u>, Pretoria, W3-0 -W3-11 (1988).

12. Volman, R. Die gebruik van bariumsulfied om sulfate uit industriële uitvloeisels te verwyder. Thesis presented for the degree M.Sc. (Chem.Eng), University of Stellenbosch (1984).