2

· The opportunity to ensure water throughout its lifetime should be considered as a positive saving from the development of the water resources management system

© by Authors and IMWA

5

a consequence of the integration of the project in the catchment basin

AngloAmerican

Minas-Rio Iron-Ore Project

 Open Pit Mine Beneficiation plant for pellet feed • Production of 26.5 Mt of high grade pellet feed per annum

· Currently under implementation phase Start up in 2013 Potential to increase production till 80Mt

AngloAmerican

• 529 km of extension • Transport of the slurry from the pit / beneficiation plant (Minas Gerais) to the Port of Açu (Rio de

Minas-Rio Iron-Ore Project

- Port of Açu, State of Rio de Janeiro • Filtration of the slurry
- Loading the ships

Development of the Water Resouces Management System

Methods

- I. Definition of the scale of the studies
- II. Technical visit of the whole area of assessment catchment basin
- III. Survey, compilation and systematization of all available information of surface and groundwater of the catchment basin and also the water demands
- IV. Critical analysis and treatment of the available data
- V. Characterization of the water demands
- VI. Characterization of the water availability
- VII. Water balance of the whole basin
- VIII. Development of technical indicators and the decision support system
- IX. Development of the operational water management system

Water Resouces Management System

The project and the Santo Antônio catchment basin - 10,500 km²

Water Resources Management System

Water demands for the project

Main water uses

- Beneficiation plant process requirements ٠
- Mine and road watering (dust allaying)
- Slurry pipeline
- Water services
- Geological drill hole

Maximum Water Demands for the Project → 2,500m³/h

10

14

Water Resources Management System

Other water users in the same basin

- Main water uses
- Hydroelectric power • plants
- Irrigation and watering animals
- Public Supply
- Other industries and mining companies

Total Water Demands for Other Water Users

Consumption: Today = 300m³/h → Potential growth to 600m³/h in 20 years Non counting conflict with hydroelectric power plants 13

۵	AngloAmerica	n
---	--------------	---

Water Resources Management System

Water Availability - main water sources

Source	Availaibility (m³/h)	Distance (km)
Run-of-river abstraction from the Peixe river	2.500	32
Set of wells for lowering the water level in the mining pit	250	2 - 6
Hydrologic potential of the dike to contain sediments	80	3
Hydrologic potential of the tailings dam	625	1
Total	3.455	-

* Availability considers the legal environmental flows defined by state organisms for sustainability of aquatic life in this basin.

AngloAmerican

Water Resources Management System

Indicators proposal and analysis

Indicators

- · Water seasonal demands for each use
- Water seasonal / monthly availability from each source •
- Implementation costs for each source / system
- ٠ Implementation costs for the pipelines and for pumping
- ٠ Distance from the beneficiation plant
- Potential conflicts with other water users
- Impacts on the hydroelectric power plants

Fev Mar

Tipical regime of the catchment basin

Precipitation

0.t Nev

Water Resources Management System

Recession flows

15

Water Resources Management System

The system main answer for each month after water balances, hydrologic and hydrogeologic models

Which is the best alternative source?

Pump high flow rates from the large stream far from the project ? (Run-of-river from Peixe river)

х

Pump from multiple smaller sources closer to the project and less hours from the Peixe river х

Pump from the dams near the project and increase its reservation closer to the project Optimize the hydrologic regularization from the dams near the project

Water Resources Management System

Conclusions

- The water management system could take to important economies to the Project
- The system can indicate the best source each month, based on hydrologic and hydrogeologic predictions and simulations
- The opportunity to abstract water from sources with less energy costs for pumping can be enough to pay the development of the system
- A Team with specialists in the Company (hydrologist, hydrogeologist and specialist in GIS) is important to develop and understand the system's results
- The system changed the water resources from a weakness of the project to an opportunity

19

