Overcoming the Pitfalls of Abandoned Mine Workings – in the Sydney Coalfield

By Dave Forrester & Bruce Noble

Presentation to IMWA Symposium 2010
Cape Breton University, September 9, 2010

PITFALLS OF ABANDONED MINE WORKINGS

IN THE SYDNEY COALFIELD:
• LEGACY ISSUES
• INFLUENCING FACTORS
• REMEDIATION EXAMPLES
• SUMMARY

LEGACY – SYDNEY COAL FIELD

LEGACY

• Of abandoned shallow workings of unrecorded location and extent known as crop pits or bootleg pits.
• They are usually located along the crop between the surface and official company workings.
• Such workings pose several pitfalls:
 i) those affecting public safety e.g. open holes, collapsing ground and flooded pits; and
 ii) those impacting groundwater flow e.g. providing pathways for percolation into deeper company workings, or draining interconnecting bootleg workings into streams and wetlands; sometimes with Acid Rock Drainage (ARD).

LEGACY ISSUES

• Bootleg Pits Hazards
 • Open holes
 • Sinkholes
 • Water & Gases
• Mine Water Considerations
 • Mine Pool in Equilibrium (BGSA)
 • Active Mine Pool

WHAT IS THE COAL MINE SUBSIDENCE HAZARD?

SAG SUBSIDENCE

SINKHOLE SUBSIDENCE
LEGACY IN THE SYDNEY COALFIELD

SINKHOLE SUBSIDENCE

- **LEGACY - MINING HAZARDS**

 - Mining hazards related to mine workings include the following:
 - existing unstable ground formed by past subsidence events;
 - unstable ground could potentially develop during/after remediation;
 - unsecured mine openings;
 - the accidental discharge of untreated acid mine waters into the environment; and
 - release of potentially hazardous & explosive gases (methane) - must be identified, detected and controlled

LEGACY – HAZARD MAPPING

- sinkhole subsidence hazard maps
 - for each seam under each site - simple guidelines in the ECBC MWP
 - using a ratio (D/M) of seam depth (D) to seam extraction height (M):
 - D/M >0 < 6 = High risk - long-term visual monitoring is required (red zone);
 - D/M >6 < 12 = Moderate risk - long-term visual monitoring is suggested (orange zone);
 - D/M >12 = Low risk - long-term visual monitoring is not required (green zone);
 - D/M infinity i.e. no mining = No risk - long-term visual monitoring is not required (green zone)

INFLUENCING FACTORS

SEAM GEOMETRY

- Water level 2.75 mbgl
- 3.0 mbgl
- 6.4 mbgl
- 7.3 mbgl
- Old Workings
- 3m
- 13m
- Ground surface

© by Authors and IMWA
INFLUENCING FACTORS

MINE WATER

REMEDIATION EXAMPLES – LOCATIONS

III. BOOTLEG MINES
- Kaneville

II. FORMER MAIN SLOPES
- Dominion No.5 & 10

I. ENVIRONMENTAL TEST PIT
- Dominion No.3

REMEDIATION EXAMPLES – HAZARD TO ENVIRONMENT TP

DO3C TP 21
UNEXPECTED MINES

REMEDIATION EXAMPLES – II. MAIN ACCESS SLOPES

REMEDIATION EXAMPLES – III. BOOTLEG PITS

Kaneville: Large Scale Remediation (~500m x 50m)
REMEDIATION METHODS

- DO NOTHING
- INSTITUTIONAL CONTROLS (Signage & Fencing)
- OPEN HOLES (SHAFTS, SINKHOLES, etc)
 - Fill using CBDC-ECBC MINE WORKINGS PROTOCOLS
 - Stage 1 – Information Gathering;
 - Stage 2 – Initial Mine Site Investigation;
 - Stage 3 – The Mine Workings Report;
 - Stage 4 – Detailed Mine Site Investigations;
 - Stage 5 – Mine Opening Remediation; and
 - Mine Site Monitoring.
- HUMPS & HOLES
 - Rough Grading
- FLOODED HOLES
 - Pump out
 - Fill using Mine Workings Portocols
- OTHER

SUMMARY

- ABANDONED MINES LEAVE HAZARDS TO PUBLIC
- IMPACTS MANY ECBC PROPERTIES
- ECBC IMPLEMENTING MINE SITE CLOSURE PROGRAM
 - Comprehensive framework for remediation, closure, divestiture
 - Established Mine Workings Protocols (MWP)
 - Successfully applied to wide variety of abandoned mine hazards
- SUCCESSFUL REMEDIATION
 - Old Mine access slopes and shafts (~ specific hazards are exposed
 - Sinkholes & Open-holes (filled and backfilled using MWP
 - Bootleg Pits – larger areas cleared, backfilled and regraded
 - Mine Water – provision for ongoing drainage, treatment on a site specific requirement basis
- ONGOING LONG-TERM MONITORING & MAINTENANCE
 - Ongoing annual visual monitoring for future differential settlement.

ACKNOWLEDGEMENTS

Acknowledgements

The authors gratefully acknowledge ECBC and PWGSC for support in doing and publishing this work.

References

CRA 2008 [Protocols to assist in the remediation of CBDC properties impacted by mine workings].

Peng 1992 [Subsidence Engineering].

LEGACY

SAG SUBSIDENCE