11/07/2011

B

Man-made infrastructure likely to be principal risk pathway: cf. abandoned mine waters

Typical adit discharge

Newcastle University

Newcastle University

Project Ramsay: assessing the UCG-CCS opportunity in North East England

- Multidisciplinary team of specialists led by Newcastle University assessed potential reserves, drilling and processing technologies, surface engineering issues, and financial scenarios
- Identified more than 5 billion tonnes of coal in workable seams at depths suitable for $\ensuremath{\mathsf{CCS}}$ in goaf and overburden
- Company now being established to pursue the opportunity

commercially

Conclusions

- UCG has great potential to support the transition to a renewable energy future without further damage to the atmosphere
- Application of hydrogeological lessons learned during longwall coal mining suggests significant scope for CO₂ storage in and above goaf formed by collapse of UCG voids
- Groundwater issues can be managed using the same principles used in conventional mine water management situations

Resources hard

Newcastle University

Thank you () Merci beaucoup () Tapadh leibh () O'wela'lin

"Jowl the top an' keep thi timmer in" p.l.younger@ncl.ac.uk

