

Dust

Estimated annual ET					
Spo	ecies	Water availability	Site	Method	Annual Tr/ET (mm)
Euc	calyptus sideroxylon	High	Riparian	Sap flow	~1400
Eud	calyptus dunnii	Low	Non riparian	Sap flow	673
Eud	calyptus GXC	Low	Non riparian	Sap flow	767
Fu	calyptus camaldulensis	Full range	N/A	3-PG model	527 - 1277
Sec	arsia lancea	High	Shallow WT	Sap flow	1094
Gra	assland	High	Riparian	Eddy covariance	576
Gra	assland	Low	Non-riparian	Regression model	566
Phi	ragmites reeds	High	Riparian	Eddy covariance	1170
Scope for increasing annual ET					

- Difficult to assess from root excavation studies
- Spatial patterns of dry season water stress

Most successful species

Exotic: Eucalyptus spp (dunnii, macarthurii, camaldulensis, grandisXcamaldulensis, melliodora grandisXnitens). Fast growth, high biomass, high ET, fire resistant, low contaminant uptake, short rotations

Indigenous: Searsia (Rhus) lancea, S. pendulina, Tamarix usneoides, Combretum erythrophyllum, Slow growth, moderate ET, contaminant uptake moderate to very high, moderate fire resistance, long rotations

Is the phytotechnology approach viable?

• From results to date:

- ET can be raised substantially by planting trees where they can access mine water
- Increased ET can balance seepage rates
 - Case study: 484 ha, annual seepage = 547500 m³, increased ET = 400 mm, area of trees required = 137 ha
- High contaminant uptake in some species, especially Tamarix usneoides
- Relatively low cost containment of seepage
- Small business opportunities, jobs

Risks

- Build-up of contaminants over time
- Tree pests, drought
- Public resistance to the use of exotic trees
- Concern by Government regulators over streamflow reductions

Some major challenges remaining

• Matching tree species to sites

- E.g. *Tamarix usneoides* hyperaccumulation of sulphates on moist saline soils
- Integrated hydrological / contaminant modeling
- RS-based woodland monitoring techniques
 - vigor (build-up of contaminants)
 - tree water use rates (effectiveness)

