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Abstract 

A newly developed FEFLOW plug-in module, piFreeze, provides simulation capabilities to cover freezing 
and thawing of subsurface water. The governing balance equations account for the respective volume frac-
tions of frozen and liquid water and for the density difference between both phases. Extensions have been 
developed for both unsaturated and saturated conditions. Constitutive relations describe the temperature 
dependency of the heat capacity including the latent heat associated with the phase change, of permeability 
and fluid viscosity, and of the thermal conductivity. A flexible empirical expression describes the local 
freezing progress im tems of liquid/ice mass fractioning over a finite temperature range around the freezing 
point. 

Application potential for FEFLOW with piFreeze is seen wherever natural or artificially induced freezing 
and thawing processes significantly affect the groundwater flow, for example in mining, construction, 
permafrost conditions, and geothermal energy. 
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Notation 

Subscripts a, l, s, i identify air, liquid, solid (other than ice), and ice phases, respectively. 
 

x Volume fraction of phase x 
 Flow-accessible volume fraction (‘porosity’), al 
x Density of phase x 

 Mass fraction of liquid water to total (liquid + frozen) water, 
ll

llii
 

T Temperature 
Lf Latent heat of freezing/melting 
 Effective thermal conductivity 
x Thermal conductivity of phase x 
C Effective volumetric heat capacity 
Cx Volumetric heat capacity of phase x 
s Liquid-phase saturation, sl  
h Liquid-phase pressure head 
Q Liquid-phase volumetric source 
Qf Liquid-phase volumetric source from freezing/melting 
So Liquid-phase specific storage coefficient 
Ks Saturated hydraulic conductivity 
Kr,ss Hydraulic-conductivity reduction factor due to saturation (empirical relation) 
Kr,f Hydraulic-conductivity reduction factor due to melting/freezing (empirical relation) 
K Effective unsaturated hydraulic conductivity, K Ks Kr,ss Kr,f 
q Liquid-phase (Darcy) flux, qhz 
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Theory 

We assume that the respective volume fractions of air, liquid, solid, and ice add up to unity everywhere and 
at all times, 

alsi 
 

The local transition from ice to liquid and vice versa is described by the ‘freezing function’ , shown 
in Fig. 1 as both an empirical linear and a smooth higher-order relation. 
 
 

 
 
Figure 1 Alternative empirical shapes expressing the local mass fraction of liquid water to total (liquid + frozen) 
                                                   water as a function of temperature. 
 
Under partially saturated conditions (a > 0, s < 1), it is assumed that water as it transitions from liquid to 
ice phase expands into space occupied by the air phase. As no water is transferred across the boundary of 
a representative elementary volume (REV) due to freezing/melting, the local water mass remains constant 
(i.e., lliiconst. with respect to ) so that 
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In contrast, under fully saturated conditions (a = 0, s = 1), there is no air present and water must transfer 
across the REV boundary due to the change in density as it transitions from liquid to ice phase or vice versa. 
In this case there is a fixed total local volume fraction available to water, (i.e., lisconst. with 
respect to ), and it follows that 
 

l
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Mass-conservation considerations give rise to an additional source term Qf appearing in the Richards 
equation 
 

So s 
h
t  

h
t  
h
t qQQf 

 
with 

Qf   for   s < 1 
  

T [°C] 

 
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and 
 

Qf

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
   for   s = 1 

 
An effective thermal conductivity is presumed to follow from the local phase composition, considering the 
contribution from the air phase as negligible, 
 

llssi i

 
A similar assumption is made for the heat capacity which must further account for the latent heat of 
freezing/melting associated with any change in the local ice fraction, 



ClClsCsiCiLfi 
i


 


T

 
As shown in Figure 2, general agreement was observed between predictions for the “Frozen Wall” 
Benchmark (McKenzie et al. 2007) by FEFLOW (Diersch 2014) with piFreeze and by SUTRA-ICE, which 
handles fully saturated conditions (McKenzie et al. 2007). 
 

 
 

 
 

 

 

 

 
Figure 2 “Frozen Wall” Benchmark, Temperature distribution and flow field after 800 d computed by FEFLOW 
                                                       with piFreeze (top) and SUTRA-ICE (bottom). 
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Application 

A hypothetical three-dimensional freeze-wall investigation is illustrated in Figure 3. Below, Figure 4 clearly 
shows the effect of the prevailing hydraulic-head gradient on the freeze-wall closure dynamics, the flow 
field, and the temperature distribution. 
 
 

Figure 3 3D Freeze-wall study. 
 
 

 

 
 

 

 

Figure 4 Temperature distribution two years after initiation of freezing compared for a groundwater hydraulic-
head gradient of 10-4 (left) and 10-3 (right). 
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