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Abstract
Remote estimation of water quality is of increasing interest to monitoring professionals. 
Unfortunately, environmental and technical limitations inhibit widespread application. 
The purpose of this study was to demonstrate spectral monitoring techniques utilizing 
data from two different platforms. Results describe strong linear relationships between 
remotely collected multispectral reflectance and in-situ metal concentrations. Spatial 
regression techniques produced a model capable of predicting particulate iron 
concentrations with moderate confidence (R2

adj = 0.83) and reasonable error (SSR = 
69.80). Overall, remote environmental monitoring represents a novel tool to advance 
and improve the effectiveness of traditional monitoring efforts.
Keywords: Geographically weighted regression, optical depth, water quality, unmanned 
aerial system

Introduction
As electromagnetic energy reaches an object 
several interactions will occur (e.g. reflection, 
transmission, absorption, and scattering) 
between photons and particles within the 
media (e.g. optically active constituents 
(OACs)) until either photons are reemitted 
(e.g. reflected), or all energy is consumed (e.g. 
absorbed). In cases where the water column 
is transparent (e.g. low concentrations of 
OACs), photons interact with the bottom 
substrate altering the expected energy 
signal (e.g. optically shallow water (OSW)). 
Conversely, if OACs are present in elevated 
concentrations, even within physically 
shallow surface waters, and the bottom 
substrate is not visible, observable energy will 
decay at an exponential rate and interactions 
with the substrate will be minimal (e.g. 
optically deep water (ODW)) (Zeng et al. 
2017). Traditional determinations of optical 
depth (OD) utilize the Beer-Lambert Law 
and require the measurement or calculation 
of the spectral intensity of incoming solar 
radiance (I), the spectral intensity of emitted 
(e.g. reflected or scattered) solar radiance 
(IO), absorption coefficient (κ) of the object, 
density (ρ) of the object, and the solar 

zenith angle (Ѳ) of I. Application of this 
methodology has been based primarily in 
meteorological sciences, typically to estimate 
the OD of water vapor and other aerosols in 
Earth’s atmosphere (Filonchyk et al. 2019).

Small Unmanned Aerial Systems 
(sUAS) have demonstrated effectiveness in 
performing remote sensing of traditional 
OACs (e.g. chlorophyll-a) in ODWs (e.g. Su 
2017). Literature gaps exist in the application 
of these technologies in OSWs and their 
use for the examination of mine drainage. 
Therefore, the purpose of this study was two-
fold: to examine the feasibility of utilizing 
sUAS-derived multispectral (MS) imagery 
(e.g. tens of spectral measurements) to 
estimate in-situ metal concentrations in 
ODWs and to investigate in-situ OD utilizing 
spectroradiometer-derived hyperspectral 
(HS) data (e.g. thousands of spectral 
measurements) to discern the effect that 
remotely sensing substrate has on sUAS-
derived MS imagery.

Methods
Study Site Description
Spectral data were collected from the surface 
of an oxidative process unit (Cell one (C1)), 
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a part of the larger Mayer Ranch Passive 
Treatment System (MRPTS) in May, June, 
and July of 2019. MRPTS is located within 
the Tar Creek watershed and Tar Creek 
Superfund Site, and the Oklahoma portion of 
the Tri-State Mining District (TSMD) (fig. 1). 
This ten-cell PTS, operated with two parallel 
treatment trains, was designed to promote 
various natural biogeochemical processes 
in specific process units. Overall, the PTS 
has effectively treated artesian net-alkaline 
ferruginous lead-zinc mine drainage since 
late 2008 (Nairn et al. 2009).

Spectral Instrument Calibration and 
Operation
Before data collection, each instrument was 
calibrated correctly. The Analytical Spectral 
Devices (ASD) FieldSpec3 was optimized 
and standardized with a white calibrated 
reflectance panel (CFP) designed to reflect 95 
– 99% of electromagnetic energy. During this 
process, the instrument measured reflected 
electromagnetic energy from the CFP to 
establish a baseline reference of approximately 

100%. To calibrate the MicaSense RedEdge 
sensor on the sUAS, an image of the same 
CFP was taken pre- and post-flight. The 
image processing software (Pix4DMapper) 
used the two calibration images to account 
for changes in solar conditions throughout 
the flight and to transform the uncompressed 
16-bit, 1,280 by 960-pixel, digital number 
values into spectral reflectance values.

In May, the ASD FieldSpec3 was used 
to collect HS (e.g. 350 – 2500 nm) profiles 
from a pair of catwalks located in C1. 
Measurements were collected nadir to the 
water surface, approximately one m above 
the surface at one m horizontal increments 
starting at the water’s edge (0 m) to the end 
of the catwalks (4 and 6 m for the northeast 
and southeast catwalks, respectively). At each 
location, the spectral profile measured was 
an average of five sets of ten measurements, 
taken in 0.1 s increments. Raw data files were 
post-processed to spectral reflectance with 
the ASD ViewSpec Pro software.

In June and July, the Aerial Technology 
International (ATI) AgBot equipped with 

Figure 1 Location of (A) TSMD in the central United States, (B) Tar Creek watershed in Oklahoma and Kansas, 
and (C) C1 within MRPTS with May catwalk and June and July in-pond sampling locations identified.
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the RedEdge sensor was used to collect MS 
reflectance imagery within ±2 h of local 
solar noon. This vertical take-off and landing 
(VTOL) quadcopter sUAS measures MS 
reflectance in five discrete spectral bands (e.g. 
blue, green, red, red edge (RE), and near-
infrared (NIR)) simultaneously with center 
points at 475, 560, 668, 717, and 840 nm, 
respectively. Each sUAS flight was completed 
autonomously, with missions developed in 
Mission Planner software V.1.3.37. Missions 
covered approximately 81,000 m2, at speeds 
of 6 m s-1, an altitude of 50 m above ground 
level, with 75% image side and overlap to 
ensure accurate georeferencing, mosaicking, 
and high-quality data. Using these mission 
parameters produced a spatial resolution of 
roughly 6.82 cm pixel-1.

In-situ Surface Water Quality Sampling
Fifteen in-situ surface water grab samples 
were geo-located and collected from C1 
within a one h window of each sUAS flight 
completion. To adequately address the spatial 
distribution of surface water quality, ten 
sampling locations were established around 
the water’s edge of C1. An additional five 
samples were collected throughout the center 
of C1 via canoe (fig. 1). Water’s edge samples 
were collected from C1 with a fully extended 
swing-arm sampling pole (approximately 
3.6 m in length). All samples were collected 
approximately 0.5 m below the water surface, 
or at the point the 1-L HDPE sample bottle 
was no longer visible. Samples for analyses 
of total and dissolved (0.45-mm) metal 
concentrations were collected at each location 
following EPA approved methods.

Assessing the Effects of Optical Depth
After the collection of HS data, Secchi disk 
depth (SDD) and actual physical depth (AD) 
were measured at the same one m horizontal 
increments. To minimize the resuspension 
of substrate and modification to the water 
column’s optical properties, SDD was measured 
first. Then AD was measured by lowering a 
weighted line into the water column until it 
contacted the surface of the substrate. With 
the assumption that SDD ~ OD, and when 
the ratio between SDD and AD was equal to 
one, interferences from the substrate were 

expected. To characterize this phenomenon 
in terms of sUAS-derived MS imagery, an 
exponential relationship was developed. 
This relationship used HS reflectance data 
extracted with respect to the red band (668 
nm) of the RedEdge sensor and the SDD AD 
ratio. Visualization of the extent of interference 
from OSWs (e.g. SDD:AD > 1) was completed 
utilizing the Raster Calculator, the statistically 
derived exponential relationship, and the 
sUAS-measured red band reflectance in 
ArcMap 10.6.1.

Results and Discussion
Estimating In-situ Surface Water Quality
In pond metal concentrations were typical of 
net alkaline metal-rich mine waters (tab. 1). 
Although MS interferences from wind action 
(e.g. glint) and cloud cover were minimal, 
interferences occurred from surface scum 
(e.g. amorphous iron-oxyhydroxide) and 
algae (e.g. chlorophyll-a), particularly in the 
southwestern and northeastern portions of 
C1, respectively. If these conditions affected 
either dataset, outliers were identified and 
removed utilizing the inter-quartile range. 

In-situ water quality and MS reflectance 
were defined as the dependent and 
independent variables, respectively. In 
reality, OACs (e.g. metals) are independent 
of and effect the MS signals measured. To 
that end, Ca, Co, K, Li, Mg, Mn, Na, Ni, Pb, 
S, Si, and Zn exhibited strong collinearity (R 
> 0.90) and except for Si and Zn exhibited 
moderately strong inverse relationships 
(R < -0.65) with the untransformed green 
band (tab.  1). Furthermore, Cd and Fe also 
displayed collinearity (R = 0.84) and exhibited 
the most robust relationships (R > 0.80) with 
the log-transformed and untransformed 
red band, respectively. Surprisingly, Zn was 
not correlated with Cd (R = 0.23), and the 
strongest relationship observed was with the 
green and RE ratio (R = -0.68). Al and Cu were 
not collinearly related with any other metal 
and required log transformations to develop 
any meaningful relationship (R  =  -0.50 and 
-0.75, respectively). Overall, the optical 
fraction (e.g. total and particulate) of metal 
concentrations were more strongly correlated 
then the non-optical fraction (e.g. dissolved).

For some metals (e.g. Cd, Pb, and Zn), the 
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prominence and adsorption capabilities of 
iron-oxyhydroxides were likely contributing 
to the observed relationships. Additionally, 
the inverse relationships with the green 
band were the result of fundamental 
electromagnetic interactions. Locations 
with higher metal (e.g. Fe) concentrations 
reflected more red energy and absorbed more 
green energy. Conversely, as concentrations 
of the predominant OAC (e.g. Fe) decreased, 
the amount of red energy reflected also 
decreased, while reflected green energy 
increased.

A series of surface water quality maps 
were generated in ArcMap 10.6.1 (fig. 2) using 
these data. The red band was the input to a 
geographically weighted regression (GWR) 
model, and local polynomial interpolation 
(LPI) was used to extrapolate particulate Fe 

concentrations across C1 (fig. 2A). These 
maps have a spatial resolution (approximately 
30 cm pixel-1) more representative of in-situ 
water quality than traditional monitoring 
efforts (e.g. single concentration applied 
to an entire water body), including a 
spatial component to the regression model 
substantially improved performance. Overall, 
the GWR model produced a sum of squared 
residuals (SSR), sigma, Akaike information 
criterion (AICc), and an adjusted R2 of 69.80, 
2.11, 112.09, and 0.83, respectively (fig. 2B). 
The relatively high SSR is due to an absence 
of sampling locations in the northern portion 
of C1 (fig. 2C). At this location (e.g. hot 
spot), there were not sufficient neighbours to 
develop meaningful statistical relationships, 
resulting in arbitrarily high residuals to be 
interpolated.

Table 1 Summary statistics (n = 23) for sUAS-derived MS reflectance (decimal percent) and in-situ total 
metal concentration data (mg L-1 unless otherwise noted) with the strongest relationship (R), MS band (X), 
any transformations (Trans.), and the metals fraction (D = dissolved, P = particulate, T = total) exhibiting 
R; * = µg L-1.

Parameter Mean Maximum Minimum R X Trans. Fraction

MS Reflectance

Blue 0.04 ± 0.01 0.08 0.03 - - - -

Green 0.11 ± 0.01 0.13 0.08 - - - -

Red 0.20 ± 0.03 0.26 0.18 - - - -

NIR 0.13 ± 0.05 0.30 0.08 - - - -

RE 0.20 ± 0.04 0.32 0.15 - - - -

[Total Metals]

Al 0.06 ± 0.05 0.28 0.02 -0.50 Green Log10 P

Ca 681.43 ± 59.93 753.96 616.68 -0.68 Green - T

Cd* 1.87 ± 0.68 3.00 1.00 0.83 Red Log10 P

Co 0.04 ± 0.004 0.05 0.04 -0.68 Green - T

Cu* 4.13 ± 1.30 8.00 2.00 -0.75 Blue Log10 P

Fe 11.14 ± 5.90 29.15 5.20 0.88 Red - P

K 22.41 ± 2.41 25.08 19.72 -0.71 Green - T

Li 0.26 ± 0.03 0.29 0.23 -0.70 Green - T

Mg 154.46 ± 14.29 171.36 139.12 -0.69 Green - T

Mn 1.17 ± 0.10 1.29 1.05 -0.65 Green - T

Na 99.02 ± 9.22 109.45 88.82 -0.71 Green - T

Ni 0.66 ± 0.06 0.74 0.58 -0.67 Green - T

Pb 0.30 ± 0.03 0.33 0.26 -0.75 Green - T

S 746.29 ± 73.42 831.56 660.99 -0.69 Green - T

Si 6.84 ± 0.60 7.60 6.04 0.75 Red - P

Zn 4.11 ± 0.37 4.58 3.56 -0.68 Green:RE - T
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Determination of Optical Depth Influence
The assumption that SDD ~ OD was verified 
by examining the shape and magnitude of 
spectral profiles collected when the substrate 
was and was not visible through the water 
column at increasing distances and depths 
from the water’s edge (0 m) (fig. 3). Remotely 
sensing bottom substrates not only decreased 
the overall energy reflected (by approximately 
20%) but modified the shape of the spectra 
(e.g. changes to peak reflectance wavelengths) 
(fig. 3). Furthermore, when the substrate 
was visible through the water column, a 

moderately strong negative exponential 
relationship existed that was representative 
of the exponential decay of spectral energy 
in water (R = 0.75). A spatial map identifying 
the extent of interference caused by OSW 
(e.g. SDD:AD > 1) within C1 was developed 
(fig. 4). Based on these results, it would be 
expected to measure interference from the 
substrate in the northeast portion of C1. 
Unfortunately, this identification of OSW 
was caused by remotely sensed algae (fig. 1), 
rather than the substrate, resulting in lower 
red, relative to green, MS reflectance. Overall, 

Figure 2 Observed (A) and GWR predicted (B) spatial water quality maps with resulting residuals (C); point 
values are labeled and were extrapolated with LPI.

Figure 3 HS profiles collected at the northeastern catwalk in May 2019 (Goethite data: Kokaly et al. 2017).
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these results represent a valid method of 
identifying the extent of OD interference to 
evaluate the feasibility of performing remote 
surface water quality monitoring in optically 
complex surface waters.

Conclusions and Future Work
Although the developed spatial water quality 
model exhibits relatively low residuals, these 
results have not been validated. It is also likely 
the results are site and mine drainage (e.g. 
net alkaline ferruginous lead-zinc waters) 
specific. Furthermore, the success of the 
model was primarily driven by the dominant 
optical properties of C1 (e.g. substantial 
presence of iron-oxyhydroxides) and is 
untested in the transparent artesian source 
waters. Rapid identification and estimation 
of OD in any type of water can address the 
feasibility of utilizing sUAS technologies for 
environmental monitoring. Results of the OD 
analysis support decreasing processing extents 
(e.g. excluding edge effects) to minimize 
interferences from OSWs and verified much 
of the studied water body (e.g. C1) were 
ODWs, suggesting the presented spatial water 
quality model was valid and representative 
of in-situ surface water conditions. Future 

efforts should include continued training 
and validation of the developed models in 
mine waters characteristic of the TSMD. 
Additional training and validation must 
occur outside the TSMD in waters affected 
by other sources of mine drainage (e.g. 
net acidic coal mine drainage) to address 
site-specificity. As sUAS technologies and 
spatial water quality models improve remote 
monitoring, they can contribute substantial 
quantities of environmental data (e.g. identify 
hot spots to focus traditional monitoring 
efforts), decrease field and laboratory costs, 
and increase spatial and temporal resolutions 
of traditional monitoring efforts. 
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Figure 4 Extent of expected OD interferences (e.g. SDD:AD > 1) within C1.
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