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Abstract
Alum sludge-based adsorbent (ASBA) and granular ferric hydroxide (GFH) were 
applied in mine drainage and synthetic solutions to investigate the adsorption 
efficiencies of arsenate (As(V)) and fluoride (F). Whereas the adsorption capacity of 
ASBA for F decreased rapidly after 513–761 bed volumes (BVs), As(V) could be treated 
for 930–1,145 BVs. The higher concentration of F than As(V) in the influent may be one 
of the factors that shortened the breakthrough for F. As(V) for GFH was maintained 
below 50 μg L-1 for 8,212 BVs. These adsorbents could be used to remove As(V) and F 
under field conditions.  
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Introduction 
that causes death as well as peripheral 
neuropathy and skin cancer if the body 
is exposed to inorganic arsenic for a long 
time (Jomova et al. 2011). Also, it has been 
reported that an excessive supply of F in the 
body results in F deposition, neurological 
problems, and immune system disorders 
(Streat et al. 2008; Kim et al. 2013). 

In general, the geological features of 
the area are closely related to the pollutants 
dissolved in mine drainage. According to 
Nicolli et al. (2008), F is mainly found in 
groundwater at high concentrations in granite-
rich areas and frequently occurs with arsenic 
in an alkaline environment. The geology of the 
Suri (Sujung) abandoned metal mine in the 
Republic of Korea is a location where biotite 

granite penetrated at the end of the Cretaceous 
period along the Ordovician limestone layer in 
the late Paleozoic era. As(V) and F are present 
at an average concentration of 79.5 μg L-1 and 
3.26 mg L-1 in alkaline mine water discharged 
from the waste metal mine, exceeding 50 μg L-1 
and 3 mg L-1 as the maximum contamination 
level (MCL). Therefore, As(V) and F above 
a specific concentration flowing out of this 
abandoned mine area must be removed for the 
conservation of the aquatic ecosystem and the 
health of residents living in nearby areas. 

The purpose of this study was to 
investigate the adsorption efficiencies of 
As(V) and F in abandoned metal mine 
drainage and synthetic solutions using ASBA 
produced by wastewater treatment facilities 
in the Republic of Korea (KOMIR 2021) and 
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GFH by a cost-saving and easy-to-manage 
adsorption treatment technique (MIRECO 
2017; Kumar et al. 2020). Following X-ray 
diffraction (XRD), wavelength dispersive 
X-ray fluorescence (WD-XRF), and extreme 
high resolution scanning electron microscope 
(FE-SEM) observations, the crystalline 
structure and mineralogical composition 
of ASBA and GFH were examined. Also, 
laboratory-scale column experiments for 
503 days were conducted on ASBA and GFH 
using mine drainage and synthetic solutions 
with dissolved As(V) and F. 

Materials and methods 
Two alum-based adsorbents (ASBA-3 and 
ASBA-G) of different sizes and shapes and 
granular ferric hydroxide (GFH) were used 
in the experiment. ASBA was prepared by the 
following procedure using sludge obtained 
from the sedimentation tank of the water 
treatment facilities: water treatment sludge, 
water, and dissociation reagents were put 
into a hydrothermal synthesizer in a certain 
amount, stirred at 100 rpm under 100 °C 
control, and the reaction was carried out for 
1 d and left for 2 d. Thereafter, the reactant 
obtained by washing several times with 
distilled water until the pH of the filtrate 
became neutral was dried until the moisture 
content was less than 5 wt.%. An amorphous 
specimen of 0.2–2.0 mm was selected from 
the produced dry materials, placed in an 
electric furnace under air supply conditions, 
and thermally treated at 500 °C for 1 h to 
prepare ASBA-G. ASBA-3 was prepared by 
mixing it properly, injecting it into a mold, 
shaping it into a sphere, and being thermally 
treated. GFH purchased and used GEH102 
products from GEH Wasserchemie GmbH 
& Co. KG in Germany. The particle diameter 
of GFH was 0.2–2.0 mm, and it was sealed 
to preserve moisture on the surface of the 
adsorbent and stored in a darkened place.

By using XRD (D8 ADVANCE, Bruker, 
Germany) and WD-XRF (ZSA PrimusIV, 
Rigaku, Japan), the mineral properties and 
constituent elements of the adsorbent samples 
were examined. Samples were prepared in 
homogeneous powder using an agate mortar 
and 100 mesh standards for those analyses. 
A Brunauer-Emmett-Teller (BET) surface 

area analyzer (3Flex, Micromeritics, USA) 
was used to determine the surface area of 
adsorbents. Also, the pore structure and size 
distribution of the adsorbent were examined 
by FE-SEM (Verios G4 UC, FEI, USA). 
To remove moisture and other impurities 
present on the adsorbent surface before 
specific surface area (SSA) measurement, 
N2 gas was adsorbed and analyzed in an 
analysis bath of -195.85 °C for 12 h under 
a nitrogen atmosphere (Badruzaman et al. 
2004), and a specimen was observed with a 
silver paste (Dotite D500) to obtain a high-
resolution surface image. The solid addition 
method (Oladoja and Aliu 2009) was used to 
determine the point of zero charge (pHPZC) 
of adsorbent samples. 

Laboratory-scale column experiments 
were performed for 503 days using synthetic 
solutions containing As(V) and F and mine 
drainage collected from the waste metal 
mine Suri (Sujung). Each volume of water 
was injected through a peristaltic pump at 
flow rates of 0.28, 0.1665, and 0.0535 mL 
min-1. Empty bed contact time (EBCT) was 
set to 88.2 (ASBA-3, ASBA-G, and GFH), 
150.9 (ASBA-G2), and 469.7 (ASBA-G3) 
min, respectively. In the case of ASBA-3, 
ASBA-G, and GFH, it was treated with mine 
drainage up to 5,502 BVs, and synthetic 
solutions spiked with As(V) and F after 5,502 
BVs were used because of the difficulties 
of collecting water samples from this 
mine site. Also, ASBA-2 and ASBA-3 used 
synthetic solutions after 2,128 and 683 BVs, 
respectively. Synthetic solutions simulating 
mine drainage contaminated with As(V) 
and F were prepared by diluting a standard 
solution, in which disodium hydrogen 
arsenate heptahydrate (Na2HAsO4·7H2O, 
Sigma-Aldrich, USA) and sodium fluoride 
(NaF, 99.9%, Sigma-Aldrich, USA) were 
dissolved at a concentration of 1,000 mg 
L-1 in deionized water. The prepared 
standard solution was used after being 
refrigerated. 0.1 N of hydrochloric acid 
(HCl, DAEJUNG, Republic of Korea) and 
sodium hydroxide (NaOH, DAEJUNG, 
Republic of Korea) were used for pH 
titration of the experimental solution. They 
were set up for a bottom-up flow.
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Results and discussion
Characteristics of ASBA and GFH
As a result of FE-SEM analysis, ASBA had a 
bumpy shape, while GFH showed a shape in 
which small grains were attached to the surface 
(Figure 1). ASBA was mostly composed of 
Al2O3 (57.32%) and SiO2 (18.21%), while 
GFH was most composed of Fe2O3 (89.58%) 
through WD-XRF analysis (Table 1). GFH 
and ASBA-G (0.2–2 mm) were granular, and 
ASBA-3 (3 mm) was spherical. As a result of 
comparative analysis of the XRD pattern with 
ICDD’s database, ASBA displayed various 
diff raction peaks, and the main crystal 
phases were quartz, muscovite, albite, and 
orthoclase. Iron oxide and akaganeite were 
detected in GFH as a diff raction pattern 
close to amorphous (Figure 2). As a result of 
BET analysis, the SSAs of powdered ASBA-3, 
ASBA-G, and GFH were 136.34, 126.07, 
and 257.02 m2g-1, respectively. According to 
IUPAC classifi cation, it was classifi ed as IV(a) 
type adsorption and desorption isotherms, 
which indicated that mesopores were 
developed in adsorbents and caused high 

SSA, porosity, and capillary condensation 
(Figure 3; Th ommes et al. 2015). 

As a result of measuring the zero charge 
point of the adsorbent surface using the solid 
addition method, ASBA-3 and ASBA-G had 
pHPZC at value of 5.25 and 5.29, respectively, 
while GFH had zero charge on the particle 
surface at a pH of 6.72 (Figure 4). Th erefore, 
ASBA is expected to be negatively charged in 
a neutral aqueous solution, so it is estimated 
that the adsorption of As(V) is slightly lower 
than that of GFH. Meanwhile, GFH has a 
positive charge on the surface of an acidic 
or neutral aqueous solution, so it is easy to 
adsorb As(V) (H2AsO4

-, HAsO4
2-) present in 

the form of anions. 

As(V) and F treatment effi  ciencies in 
laboratory-scale column experiments
To evaluate the adsorption effi  ciencies of 
these adsorbents, laboratory-scale column 
experiments were conducted by changing 
from mine drainage to synthetic solutions 
injected into the column at 79.5 μg L-1 and 
3.26 mg L-1 using ASBA and GFH. When 
mine drainage and synthetic solutions 
were passed through these adsorbents, 
breakthrough for As(V) occurred aft er 1,145 
(ASBA-3), 930 (ASBA-G), 949 (ASBA-G2), 
1,066 (ASBA-G3), and 8,212 (GFH) BVs 
granules were packed. As(V) concentration 
was maintained below 10 μg L-1 until 
GFH reacted with 8,212 BVs (Figure 5). It 
represented that As(V) had a high affi  nity 
for iron compounds, which were the main 
ingredient in GFH. As the EBCT became 
shorter, the contact time between As(V) and 
the adsorption site decreased, indicating that 
the time to adsorb and remove As(V) below 
the MCL (50 μg L-1) of discharged water was 

Table 1 Major element composition of adsorbents 
analyzed by WD-XRF.

Composition
(wt.%)

ASBA GFH

Al2O3 57.32 0.69

SiO2 18.21 0.31

P2O5 5.58 0.02

Fe2O3 2.94 89.58

MnO 1.26 –
Cr2O3 0.01 0.87

CO2 11.53 5.77

Cl 0.05 2.33

Figure 1 FE-SEM images of adsorbents (a) ASBA and (b) GFH.
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insuffi  cient. ASBA-G reached the MCL earlier 
than ASBA-3. However, ASBA-3 showed a 
higher As(V) concentration in effl  uent than 
ASBA-G, indicating that ASBA-G had a better 
adsorption capacity than ASBA-3 (Figure 6). 

In the case of F in ASBA-G2 and ASBA-
G3, the F concentration of effl  uent increased 
faster than that of As(V). Th us, breakthrough 
occurred aft er 513 (ASBA-G2) and 761 
(ASBA-G3) BVs, respectively (Figure 7). 
In the case of As(V), the breakthrough was 

reached aft er treatment with 930 to 1,145 
BVs. Meanwhile, the adsorption capacity 
for F decreased rapidly aft er treatment with 
513 to 761 BVs and the breakthrough then 
happened. One of the causes that may have 
reduced the breakthrough time for F was 
the higher concentration of F than As(V) in 
the infl uent, and then F was adsorbed more 
in ASBA-G2 and ASBA-G3 granules. In 
addition, because F and hydroxide ions were 
competitively adsorbed under a pH condition 

Figure 2 XRD patterns of adsorbents; (a) ASBA and (b) GFH.

Figure 3 N2 adsorption-desorption isotherm of adsorbents; (a) ASBA-3, (b) ASBA-G, and (c) GFH.

Figure 4 Determination of pHpzc (point of zero charge) of adsorbents; (a) ASBA-3, (b) ASBA-G, and 
(c) GFH.
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As(V) and F treatment efficiencies in laboratory-scale column experiments 

To	 evaluate	 the	 adsorption	 efficiencies	 of	 these	 adsorbents,	 laboratory-scale	 column	
experiments	 were	 conducted	 by	 changing	 from	mine	 drainage	 to	 synthetic	 solutions	 injected	
into	 the	column	at	79.5	μg	L-1	and	3.26	mg	L-1	using	ASBA	and	GFH.	When	mine	drainage	and	
synthetic	 solutions	 were	 passed	 through	 these	 adsorbents,	 breakthrough	 for	 As(V)	 occurred	
after	 1,145	 (ASBA-3),	 930	 (ASBA-G),	 949	 (ASBA-G2),	 1,066	 (ASBA-G3),	 and	 8,212	 (GFH)	 BVs	
granules	were	packed.	As(V)	concentration	was	maintained	below	10	μg	L-1	until	GFH	reacted	
with	 8,212	 BVs	 (Figure	 5).	 It	 represented	 that	 As(V)	 had	 a	 high	 affinity	 for	 iron	 compounds,	
which	were	the	main	ingredient	in	GFH.	As	the	EBCT	became	shorter,	the	contact	time	between	
As(V)	and	 the	adsorption	 site	decreased,	 indicating	 that	 the	 time	 to	adsorb	and	 remove	As(V)	
below	the	MCL	(50	μg	L-1)	of	discharged	water	was	insufficient.	ASBA-G	reached	the	MCL	earlier	
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Figure 5 Changes in As(V)  concentration of column effl  uent at EBCT 88.2 min of adsorbents. 
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than	ASBA-3.	However,	ASBA-3	showed	a	higher	As(V)	 concentration	 in	effluent	 than	ASBA-G,	
indicating	that	ASBA-G	had	a	better	adsorption	capacity	than	ASBA-3	(Figure	6).		

In	the	case	of	F	in	ASBA-G2	and	ASBA-G3,	the	F	concentration	of	effluent	increased	faster	than	
that	 of	 As(V).	 Thus,	 breakthrough	 occurred	 after	 513	 (ASBA-G2)	 and	 761	 (ASBA-G3)	 BVs,	
respectively	(Figure	7).	In	the	case	of	As(V),	the	breakthrough	was	reached	after	treatment	with	
930	 to	1,145	BVs.	Meanwhile,	 the	 adsorption	 capacity	 for	F	decreased	 rapidly	 after	 treatment	
with	 513	 to	 761	 BVs	 and	 the	 breakthrough	 then	 happened.	 One	 of	 the	 causes	 that	may	 have	
reduced	the	breakthrough	time	for	F	was	the	higher	concentration	of	F	than	As(V)	in	the	influent,	
and	 then	F	was	adsorbed	more	 in	ASBA-G2	and	ASBA-G3	granules.	 In	addition,	because	F	and	
hydroxide	 ions	 were	 competitively	 adsorbed	 under	 a	 pH	 condition	 close	 to	 neutral,	 the	
adsorption	amount	of	F	would	have	been	relatively	reduced	(Streat	et	al.	2008).	Therefore,	ASBA	
and	GFH	have	the	potential	to	be	used	under	field	conditions	for	the	remediation	of	As(V)	and	F.		
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than	ASBA-3.	However,	ASBA-3	showed	a	higher	As(V)	 concentration	 in	effluent	 than	ASBA-G,	
indicating	that	ASBA-G	had	a	better	adsorption	capacity	than	ASBA-3	(Figure	6).		
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that	 of	 As(V).	 Thus,	 breakthrough	 occurred	 after	 513	 (ASBA-G2)	 and	 761	 (ASBA-G3)	 BVs,	
respectively	(Figure	7).	In	the	case	of	As(V),	the	breakthrough	was	reached	after	treatment	with	
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Figure	7		Changes	in	F	concentration	of	column	effluent	according	to	EBCT	of	ASBA.	 

Conclusions	
Laboratory-scale	column	experiments	were	executed	on	ASBA	and	GFH	using	mine	drainage	and	
synthetic	solutions	for	a	duration	of	503	days.	GFH	removed	As(V)	from	79.5	μg	L-1	to	10	μg	L-1	
while	processing	8,212	BVs.	Also,	ASBA	treated	930–1,145	BVs	to	eliminate	As(V)	and	513–761	
BVs	for	the	removal	of	F.	Thus,	it	was	found	that	the	length	of	the	EBCT	and	the	breakthrough	BV	
had	a	proportional	relationship.	Because	the	F	concentration	in	the	influent	was	higher	than	that	
of	 As(V),	 the	 breakthrough	 for	 F	 was	 shorter	 than	 that	 of	 As(V).	 Therefore,	 at	 field	 sites	
contaminated	with	As(V)	and	F,	these	adsorbents	may	contribute	to	the	removal	of	As(V)	and	F.		
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close to neutral, the adsorption amount of F 
would have been relatively reduced (Streat et 
al. 2008). Therefore, ASBA and GFH have the 
potential to be used under field conditions for 
the remediation of As(V) and F.

Conclusions
Laboratory-scale column experiments 
were executed on ASBA and GFH using 
mine drainage and synthetic solutions for a 
duration of 503 days. GFH removed As(V) 
from 79.5 μg L-1 to 10 μg L-1 while processing 
8,212 BVs. Also, ASBA treated 930–1,145 
BVs to eliminate As(V) and 513–761 BVs for 
the removal of F. Thus, it was found that the 
length of the EBCT and the breakthrough BV 
had a proportional relationship. Because the 
F concentration in the influent was higher 
than that of As(V), the breakthrough for F 
was shorter than that of As(V). Therefore, 
at field sites contaminated with As(V) and 
F, these adsorbents may contribute to the 
removal of As(V) and F. 
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