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Extended Abstract
Abandoned mine drainage (AMD) from legacy coal mines degrades thousands of 
kilometers of streams across the northern Appalachian Coal Basin of eastern USA. 
Where it emerges to the surface, AMD generally has field-measured pH that is acidic 
(2.5-4) or near-neutral (pH 6-7) (Fig. 1) along with elevated concentrations of CO2, 
SO4, Fe, Al, Mn, and other constituents (Cravotta and Kirby, 2004; Kirby and Cravotta, 
2005a, 2005b; Cravotta, 2008a, 2008b; Vesper et al., 2016; Vass et al., 2019a, 2019b). 
Although the pH of net-acidic AMD tends to decrease after discharging, net-alkaline 
AMD has sufficient alkalinity to maintain pH ≥6 after outgassing of CO2 and complete 
oxidation of Fe and Mn (Fig. 1). Nevertheless, because atmospheric equilibration and 
oxidation can be slow compared to travel time, even net-alkaline AMD can be a long-
term source of stream contamination by Fe, Mn, and SO4 (Cravotta, 2015; Cravotta  
et al., 2014, 2015; Cravotta and Brady, 2015). Thus, to mitigate negative effects on the 
aquatic environment, net-acidic or net-alkaline AMD could warrant treatment to meet 
mine effluent limits (pH 6–9, Fe <7 mg/L, Mn <5 mg/L) or in-stream criteria (pH 6–9, 
Fe <1.5 mg/L, Mn <1 mg/L) (Commonwealth of Pennsylvania, 2020).
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Figure 1 Bimodal pH of 140 abandoned mine drainage sample (adapted from Cravotta and Kirby, 
2004; Kirby and Cravotta, 2005b). Outgassing of CO2 causes pH of aged samples to increase, while Fe 
oxidation and hydrolysis cause pH to decrease.
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Although treatment of net-alkaline AMD may simply require aeration/
decarbonation and sufficient retention time to facilitate Fe oxidation and settling of 
metal-rich particles, treatment of net-acidic AMD also requires alkalinity addition. 
Various passive and/or active treatment strategies may be appropriate depending on the 
AMD flow and chemistry, site characteristics, funding, and operational logistics plus 
the chemical and biological characteristics of the receiving water body (Cravotta and 
Brady, 2015; Skousen et al., 2017, 2019). 

In general, AMD treatment promotes an increase in the pH or Fe oxidation state 
with consequent increases in the potential to (1) precipitate relatively soluble FeII 
(and MnII) phases and/or (2) oxidize Fe and precipitate lower solubility FeIII phases  
(Fig. 2). Because of relatively high solubility of FeII phases at near-neutral pH (Fig. 2), 
oxidation is needed to effectively decrease dissolved Fe concentrations and loadings to 
streams (Cravotta et al., 2014, 2015; Cravotta, 2021). The precipitated FeIII oxyhydroxides 
may adsorb and effectively attenuate concentrations of MnII and various trace elements 
at near-neutral pH (Cravotta, 2008a, 2008b, 2021, 2022; Cravotta and Brady, 2015). 
Thus, if near-neutral pH is maintained and stream habitat is suitable, recovery of fish 
populations and other aquatic life in historically mining impaired watersheds may be 
anticipated (Cravotta et al., 2010). 

Eventually, AMD treatment may not be warranted to meet effluent discharge limits 
or in-stream thresholds for aquatic life, because AMD sources invariably become 
less acidic over a decadal timeframe with progressively decreasing concentrations of 

Figure 2 Total dissolved Fe concentrations for 140 AMD samples relative to equilibrium conditions for 
siderite (FeIICO3), amorphous FeIII(OH)3, goethite (FeIIIOOH), schwertmannite (FeIII

8O8(OH)4.5(SO4)1.75), 
and jarosite (KFeIII

3(SO4)2(OH)6) (adapted from Kirby and Cravotta, 2005a; Cravotta, 2008b). FeIII 
phases may limit Fe concentrations in low-pH samples; however, FeII is the predominant Fe oxidation 
state for most AMD samples. Siderite equilibrium could limit dissolved Fe concentrations for net-alkaline 
AMD at pH ≥6
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contaminants (Younger, 2000; Demchak et al., 2004; Mack and Skousen, 2008; Raymond 
and Oh, 2009; Burrows et al., 2014; Schaffer et al., 2023, 2024a). As the water quality 
evolves to become less contaminated, adjustments to AMD management strategies 
and funding estimates may be warranted. For example, considering the water-quality 
evolution model for a large underground coal mine, shown in Fig. 3, net-acidic AMD 
during the first and second decades (0–20 years) may require active treatment with a 
caustic chemical, whereas marginally net-alkaline quality during the third and fourth 
decades (20-40 years) could involve peroxide treatment without alkaline additives (e.g. 
Means et al., 2013), transitioning to passive aeration thereafter (40-100 years) (e.g. 
Cravotta, 2007; Hedin, 2008; Skousen et al., 2017). The selected treatment technologies 
consider the water-quality characteristics plus the cost-effectiveness and feasibility for 
implementation of treatment, explained in more detail below. 

The rate of AMD evolution, especially the timing of transition from net-acidic to 
net-alkaline character, and projection of long-term water-quality trends are difficult 
to predict. Nevertheless, future projections of the pH, net acidity, Fe, SO4, and other 
solute concentrations may be constrained by site-specific hydrological information, 
such as the background groundwater composition and recharge rate, and geochemical 
observations, such as mineralogy and aqueous equilibrium conditions (e.g. Schaffer  
et al., 2023, 2024a).

Figure 3 Novel “first-flush” hydrogeochemical evolution model that incorporates groundwater 
dilution and geochemical reactions over decadal timeframe, for Lowber Mine, southwestern 
Pennsylvania (adapted from Schaffer et al., 2023, 2024a, 2024b). Simulated (lines) and measured 
(points) values for SO4, Fe, Ca, and Na (mg/L) and pH are shown for the model scenario considering 
constant groundwater influx combined with progressively decreasing mineral dissolution and cation 
exchange. The timing for transition from net-acidic to net-alkaline character is indicated by the 
change in pH from <4 to >5.5. At any time, concentration of Fe is limited by equilibrium with 
jarosite, schwertmannite, amorphous Fe(OH)3, and/or siderite
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Because of uncertainty in predictions, effective solutions to AMD problems at 
a given site may necessitate study and experiments to understand interactions and 
primary variables that influence the chemistry of the untreated and treated AMD. For 
example, various studies have been published on mineralogical composition and likely 
water-rock interactions to explain post-mining groundwater quality (Cravotta, 1991, 
1994; Cravotta et al., 1994a, 1994b; Schaffer et al., 2024a). Additional studies focused 
on factors affecting the rates of important reactions in proposed or constructed AMD 
treatment systems, including kinetics models of limestone dissolution (Cravotta and 
Trahan, 1998; Cravotta, 2003, 2008c; Cravotta et al., 2008) and of CO2 outgassing 
and Fe oxidation (Geroni et al., 2012; Cravotta, 2007, 2015, 2021). Such studies and 
resultant understanding of important environmental factors have been considered 
for development of geochemical models to explain and integrate spatial and temporal 
variations in AMD quality at watershed to site scales (e.g. Cravotta et al., 2014; Schaffer 
et al., 2024a) as well as those within AMD-impaired streams and AMD treatment 
facilities (Cravotta et al., 2015; Cravotta, 2020, 2021, 2022). 

PHREEQ-N-AMDTreat is a new water-quality modeling tool, based on the 
“TreatTrainMix2” model developed by Cravotta (2020, 2021), that uses PHREEQC 
(Parkhurst and Appelo, 2013) to simulate changes in water quality during passive 
or active treatment. This tool was recently incorporated with the newly recoded 
AMDTreat 6.0 Beta treatment cost-analysis model (Office of Surface Mining 
Reclamation and Enforcement, 2022). By adjusting kinetic variables or chemical 
dosing, effects of independent or sequential treatment steps that have different 
retention time, aeration rate, or quantities of reactive solids can be assessed for a 
specified influent. When considered with the AMDTreat 6.0 cost-analysis model, 
the tool may be applied to evaluate long-term management strategies. Importantly, 
based on modeled reaction time estimates for successive treatment steps, which 
correspond to the system size, the AMDTreat cost-analysis model may be used to 
estimate long-term funding requirements for treatment system installation plus 
recapitalization and annual operations and maintenance. Thus, various active and/
or passive treatment strategies and associated liability can be identified for initial, 
current, or future effluent. For the case illustrated in Fig. 3 and explained in detail by 
Schaffer et al. (2024b), the liability for active treatment during 0-20 years, expressed as 
net-present value, was estimated to exceed $30 million USD, whereas that for passive 
treatment after 40 years, decreased to less than $10 million USD. Although timing and 
long-term predictions of water-quality changes are imprecise, such analysis clearly 
demonstrates the importance of geochemical modeling for understanding, planning, 
and mitigating aquatic contamination by AMD. The modeling may be used to 
indicate cost-effectiveness of various treatment scenarios and guide empirical testing 
to corroborate model estimates and to refine treatment designs.
Keywords: Aqueous speciation, saturation indices, bimodal pH, equilibrium, kinetics, 
AMDTreat, PHREEQC
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