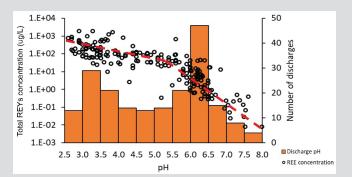


Laboratory and Field Observations Inform Geochemical Models of Treatment Strategies to Recover Rare-Earth Elements from Acid Mine Drainage

Charles A. Cravotta III¹, Travis L. Tasker², Benjamin C. Hedin³


¹Cravotta Geochemical Consulting, Bethel, PA, USA, cravottageochemical@gmail.com, ORCID 0000-0003-3116-4684

²Saint Francis University, Loretto, PA, USA, ttasker@francis.edu, ORCID 0000-0001-5040-7579

³Hedin Environmental, Inc., Pittsburgh, PA, USA, ben.hedin@hedinenv.com, ORICID 0000-0002-4695-9634

Extended Abstract

Discharges from coal mines that have low pH, hereinafter identified as acid mine drainage (AMD), commonly have elevated dissolved concentrations of sulfate (SO_4) , transition metals (Fe > Mn > Zn > Ni > Co > Cu > Cr > Cd), other metals (Al > Pb > Ga > Tl > In), and the lanthanide rare-earth elements, yttrium, and scandium (REYs: Y > Ce > Sc > Nd > La > Gd > Dy > Sm > Pr > Er > Yb > Eu > Ho > Tb > Tm > Lu)(Cravotta, 2008a). The REYs and many of these associated metals are among more than 50 "critical minerals" that are in great demand for clean energy and other modern technologies and for which global supply chains are vulnerable to disruption (Schulz et al. 2017; Nassar et al. 2020). The REYs occur as trace cations having predominant 3+ oxidation state (Me³⁺) in AMD and associated waters, with tendency to form aqueous and surface complexes (Verplanck et al. 2004; Pourret and Davranche, 2013; Liu et al. 2017; Lozano et al. 2019). Dissolved REYs concentrations in AMD generally decrease as the pH increases, especially at pH > 5, accumulating with Fe, Al, and Mn that precipitate as hydrous metal oxides (HMeO) (Verplanck et al. 2004; Cravotta, 2008a; Vass et al. 2019a, 2019b; Hedin et al. 2020, 2024) (Fig. 1). In contrast, the concentration of dissolved SO₄, the predominant anion in AMD, tends to remain elevated and largely uncomplexed across a wide range of pH, despite limited precipitation with Fe and Al hydroxysulfate compounds (e.g. jarosite, schwertmannite, basaluminite) (Cravotta, 2008a, 2008b; Nordstrom, 2020) and/or adsorption by hydrous Fe, Al, and/or Mn oxides (Dzombak and Morel, 1990; Yao and Millero, 1996; Karamalidis and Dzombak, 2010; Lozano et al. 2019).

Figure 1 Rare-earth elements (REYs) are elevated in AMD from coal mines in Pennsylvania (adapted from Cravotta, 2008a; Hedin et al. 2020). Dissolved REYs concentrations decrease with increased pH, exhibiting a break in slope at pH \approx 5. The REYs accumulate with Fe, Mn, and Al in AMD treatment solids

An economically sustainable approach for recovery of REYs and other associated critical minerals from AMD could offset treatment costs, depending on environmental and economic factors for extraction and transport (Fritz et al. 2021). Various AMD treatment strategies may be effective for concentrating REYs with AMD treatment solids through adsorption and/or precipitation with hydroxide, phosphate, or oxalate compounds (Ayora et al. 2016; Zhang and Honaker, 2018; Josso et al. 2018; Edahbi et al. 2018; Royer-Lavallée et al. 2020; Wang et al. 2021; Leon et al. 2021; Mwewa et al. 2022; Hermassi et al. 2022). Nevertheless, impurities such as Fe, Al, Mn, Ca, and Mg, which are major components in typical AMD treatment solids (Hedin et al. 2020, 2024; Wang et al. 2021), tend to dilute the concentrations of more valuable trace components, increasing costs for transportation and processing. If REYs could be concentrated after first removing Fe and Al, without addition or precipitation of Mg and Ca, subsequent REYs-bearing fluids or solid(s) may have greater value for REYs recovery.

This study employs version 1.0.3 of the PHREEQ-N-AMDTreat+REYs water-quality modeling tools (Cravotta, 2022), which were expanded from the original PHREEQ-N-AMDTreat tools (Cravotta, 2021) to simulate changes in the concentrations of REYs, Fe, Al, Mn, SO₄, and other solutes plus the formation of solids containing REYs. The models simulate the evolution of AMD in response to treatment, considering the composition and availability of HMeO sorbent and the potential for REYs compounds and other solids to precipitate. The models utilize the wateq4fREYsKinetics.dat database, which was expanded from wateq4f.dat (Ball and Nordstrom, 1991) provided with PHREEQC (Parkhurst and Appelo, 2013) to include thermodynamics data on REYs aqueous and surface species plus relevant REYs solid phases (hydroxide, carbonate, phosphate, and oxalate compounds). Surface species for REYs plus other cations and anions were added for hydrous ferric oxide (HFO: Dzombak and Morel, 1990), hydrous aluminum oxide (HAO: Karamalidis and Dzombak, 2010; Lozano et al. 2019), and hydrous manganese oxide (HMO: Tonkin et al. 2004; Pourret and Davranche, 2013), which constitute the total HMeO sorbent mass.

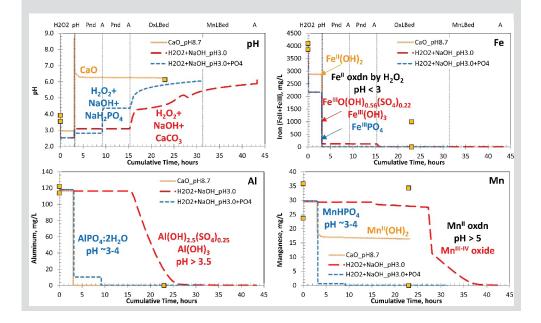
To investigate potential effects of sorbent composition, pH, and SO₄, a series of titration experiments was recently conducted in the laboratory during summer 2022. Each experiment used a solution with starting pH less than 2 that contained 50 μ g/L of each of the 16 REYs plus 1 mmol/L of sorbent metal (Fe, Al, or Mn). To evaluate if REYs attenuation resulted by co-precipitation with Fe, Al, or Mn versus adsorption by HFO, HAO, or HMO, replicate experiments were conducted in parallel using the same REYs concentrations with initially aqueous (Fe³⁺, Al³⁺, or Mn³⁺) or solid (HFO, HAO, or HMO) forms. A hydrochloric acid (HCl) solution matrix was used for the first set of experiments, whereas a sulfuric acid (H₂SO₄) solution was used for the other sets of experiments. For all experiments, the pH was increased to pH values ranging from about 3 to 10 by titration with sodium hydroxide (NaOH). The dissolved concentrations of REYs and major metals were measured after 24 hours reaction time, centrifuging, and filtration (0.45- μ m).


To model the empirical titration results, new adsorption reactions and equilibrium constants were estimated using PEST version 17.5 (Doherty, 2015) in combination with PHREEQC (Parkhurst and Appelo, 2013). Instead of using estimates from linear free energy relations (LFER) for divalent cations, we (1) adapted the adsorption expression for Cr^{3+} , the only trivalent cation reported by Dzombak and Morel (1990) (eq. 5), and also (2) determined new equilibrium constants for reactions where the uncomplexed cation is bound by adsorbed SO₄ (eq. 7) (Table 1).

Speciation models using PHREEQC with the new adsorption expressions (eqs. 5 and 7) accurately describe the observed adsorption of REYs to HFO (Fig. 2, bottom graphs). In contrast, modeled adsorption using equilibrium constants estimated by LFER (eq. 4)

Aqueous speciation reactions (Me ⁺ⁿ is divalent (n=2) or trivalent (n=3) cation):			
$Me^{+n} + H_2O = MeOH^{(n-1)} + H^+$		LogK _{OH} MeOH ₁	(eq. 1)
$Me^{+n} + SO_4^{-2} = Me(SO_4)^{(n-2)}$		LogK _s MeSO₄	(eq. 2)
Surface speciation reactions (SURF is HFO, HAO, or HMO):			
$SURF_OH + SO_4^{-2} = SURF_OHSO_4^{-2} + H^+$		Log K ₁ SURF_OHSO ₄ -2	(eq. 3)
$SURF_OH + Me^{+n} = SURF_OMe^{(n-1)} + H^+$	(LFER)	$Log \ K_2 \ SURF_OMe^{(n-1)}$	(eq. 4)
$SURF_OH + Me^{+n} + H_2O = SURF_OMeOH^{(n-2)} + 2H^+$		Log K ₃ SURF_OHMe ⁽ⁿ⁻²⁾	(eq. 5)
$SURF_OH + Me(SO_4)^{(n\cdot2)} = SURF_OMe(SO_4)^{(n\cdot3)} + H^{\scriptscriptstyle +}$		$Log K_4 SURF_OMe(SO_4)^{(n-3)}$	(eq. 6)
$SURF_OHSO_4^{-2} + Me^{+n} = SURF_OMe(SO_4)^{(n-3)} + H$	l+	$Log K_{s} SURF_OMe(SO_{4})^{(n-3)}$	(eq. 7)

Table 1 Aqueous and surface speciation reactions considered in PHREEQ-N-AMDTreat+REYs models


Note that equation 4 is widely applied for divalent cations and to estimate adsorption equilibrium constants given the first hydrolysis constant (eq. 1) and linear free energy relation (LFER) expressions. Also, note that equation 7 is derived by subtracting equation 3 from the sum of equations 2 and 6 (Log $K_5 = Log K_4 + Log K_s - Log K_1$)

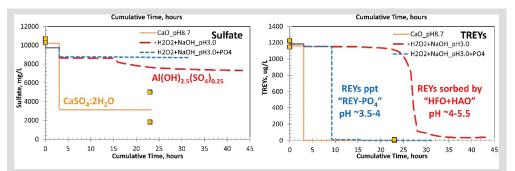


Figure 2 Model calibration to empirical data. Graphs on the left show lutetium attenuation by HFO slurry in sulfuric acid matrix. The top graph shows poor fit of the initial model based on LFER estimated log K values (eq. 3); the lower graph shows results using the "best-fit" adsorption log K values derived using PEST and new equilibrium expressions for trivalent cations that consider effects of pH and SO₄ (eqs. 5, 6, 7). On the right, model curves are shown for all 16 REYs. The upper graph shows initial results using LFER estimates. The lower graph shows results using the new optimized log K values. The empirical data and model results indicate effective pH of adsorption shifted by 2 pH units from approximately 6.5 (LFER) to 4.5 (optimized)

greatly underestimated the observed attenuation of REYs at pH <6, especially in the presence of SO₄ (Fig. 2, top graphs). The new model results are consistent with prior reports for AMD systems where ternary complexes with SO₄ resulted in enhanced adsorption of various divalent cations (Me²⁺: Cd, Cu, Co, Pb, Ni, Zn) by HFO (Swedlund and Webster, 2001; Swedlund et al. 2003) and trivalent REYs (Me³⁺) by HAO (Lozano et al. 2019). Therefore, version 1.0.3 of PHREEQ-N-AMDTreat+REYs (Cravotta, 2022) includes the new equilibrium reactions for adsorption of Me²⁺ and Me³⁺ by HFO, HAO, and HMO plus interactions of those cations as with adsorbed SO₄ (HFO_SO₄⁻² and HFO_SO₄⁻²).

Potential treatment strategies that could feasibly produce a concentrated REYs extract from AMD are evaluated using PHREEQ-N-AMDTreat+REYs models. For a passive treatment case, Hedin et al. (2024) reported REYs accumulated in limestone beds can be accurately simulated using the "CausticTitrationMix2.exe" tool, which indicated attenuation of REYs mainly with HAO and HMO. For an active treatment case, a coal-refuse facility with highly acidic leachate having elevated concentrations of Fe, Al, Mn, and REYs currently utilizes lime neutralization, which causes precipitation of Fe, Al, and REYs into complex Fe-Al-Ca rich sludge mixture. The current treatment and two alternative strategies that could concentrate REYs were simulated with the "TreatTrainMix2REYs.exe" tool (Fig. 3). The lime treatment to pH \approx 8.7 removes REYs with the sludge mixture. In contrast, alternative strategies using H_2O_2 to oxidize Fe^{II} demonstrate potential for removal of most Fe and Al without substantial removal of REYs. In one case, NaOH is added to initial pH 3 followed by aeration to precipitate Fe and Al oxyhydroxides at pH <4.5. Subsequent aeration and further increasing pH with limestone promotes adsorption of REYs by HAO and HMO that form thereafter. In another case, NaOH and NaH₂PO₄ are added to precipitate REY-PO₄ after H₂O₂ addition (e.g. Hermassi et al. 2022). In both cases, REYs-enriched solids produced by the alternative treatments contain a small fraction of the initial Fe and Al and most of the REYs. Bench-scale testing of the simulated, sequential treatment steps to concentrate REYs into solids may be considered, guided by modeling, to verify results and evaluate extraction methods to re-mobilize the REYs from the various solid components (e.g. Rushworth et al. 2023; Boothe et al. 2024).

Figure 2 Comparison of measured (symbols) and PHREEQ-N-AMDTreat+REYs simulation results (curves) for pH and dissolved Fe, Al, Mn, SO₄, and total REYs concentrations at a coal-refuse disposal facility. Measured values are for lime treatment without H_2O_2 , sampled on two different dates

By combining the PHREEQ-N-AMDTreat+REYs water-quality modeling tools with the AMDTreat 6.0 cost-analysis model (Office of Surface Mining Reclamation and Enforcement, 2022), a user may (1) identify and evaluate strategies for AMD treatment that result in effective REYs recovery and (2) estimate costs for installation and operation of relevant treatment steps.

Keywords: Resource recovery, rare-earth elements, adsorption, aqueous speciation, PHREEQC, AMDTreat

Acknowledgements

Financial support for the PHREEQ-N-AMDTreat+REYs software and laboratory adsorption experiments was provided by the Office of Surface Mining Reclamation and Enforcement. Charles Cravotta retired from the U.S. Geological Survey (USGS) in December 2023. Although the PHREEQ-N-AMDTreat+REYs software has been approved for release by the USGS, this paper has not been subjected to USGS review and approval.

References

- Ayora C, Macías F, Torres E, Lozano A, Carrero S, Nieto JM, Pérez-López R, Fernández-Martínez A, Castillo-Michel H (2016) Recovery of rare earth elements and yttrium from passiveremediation systems of acid mine drainage. Environ Sci Tech 50:8255-8262. https://doi. org/10.1021/acs.est.6b02084
- Ball JW, Nordstrom DK (1991) User's manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters. US Geol Surv Open-File Report 91-183. https://pubs.usgs.gov/of/1991/0183/report.pdf
- Boothe TJ, Capo RC, Stewart BW, Hedin B, Olds T, Rosenfeld C (2024) Lab-based assessment of

critical metal adsorption by biotic and abiotic hydrous manganese oxides. 2024 West Virginia Mine Drainage Task Force Symposium & 15th International Mine Water Association Congress (this proceedings).

- Cravotta CA III (2008a) Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA -- 1. Constituent concentrations and correlations. Appl Geochem 23:166-202. https://dx.doi.org/10.1016/j. apgeochem.2007.10.011
- Cravotta CA III (2008b) Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA -- 2. Geochemical controls on constituent concentrations. Appl Geochem 23:203-226. https://dx.doi. org/10.1016/j.apgeochem.2007.10.003
- Cravotta CA III (2021) Interactive PHREEQ-N-AMDTreat water-quality modeling tools to evaluate performance and design of treatment systems for acid mine drainage. Appl Geochem 126:104845. https://doi.org/10.1016/j. apgeochem.2020.104845
- Cravotta CA III (2022) Interactive PHREEQ-N-AMDTreat+REYs water-quality modeling tools to evaluate potential attenuation of rare-earth elements and associated dissolved constituents

by aqueous-solid equilibrium processes (software download). US Geol Surv Software Release https://doi.org/10.5066/P9M5QVK0

- Doherty J (2015) Calibration and uncertainty analysis for complex environmental models. PEST: complete theory and what it means for modeling the real world. Watermark Numerical Computing, Brisbane, Australia. https:// pesthomepage.org/pest-book
- Dzombak DA, Morel FMM (1990) Surface complexation modeling: Hydrous ferric oxide. John Wiley and Sons, New York, NY, USA.
- Edahbi E, Plante B, Benzaazoua M, Ward M, Pelletier M (2018) Mobility of rare earth elements in mine drainage: Influence of iron oxides, carbonates, and phosphates. Chemosphere 199:647-654. https://doi. org/10.1016/j.chemosphere.2018.02.054
- Fritz AG, Tarka TJ, Mauter MS (2021) Technoeconomic assessment of a sequential step-leaching process for rare earth element extraction from acid mine drainage precipitates. ACS Sustainable Chem Engineer 9:9308-9316. https://doi.org/10.1021/acssuschemeng.1c02069
- Hedin BC, Hedin RS, Capo RC, Stewart BW (2020) Critical metal recovery potential of Appalachian acid mine drainage treatment solids. Int J Coal Geol 231:103610. https://doi.org/10.1016/j. coal.2020.103610
- Hedin BC, Stuckman MY, Cravotta CA III, Lopano CL, Capo RC (2024) Determination and prediction of micro scale rare earth element geochemical associations in mine drainage treatment wastes: Chemosphere 346:140475. https://doi.org/10.1016/j. chemosphere.2023.140475
- Hermassi M, Granados M, Valderrama C, Ayora C, Cortina JL (2022) Recovery of rare earth elements from acidic mine waters: An unknown secondary resource. Sci Tot Environ 810:152258. https://doi.org/10.1016/j.scitotenv.2021.152258
- Josso P, Roberts S, Teagle DAH, Pourret O, Herrington R, Ponce de Leon Albarran C (2018). Extraction and separation of rare earth elements from hydrothermal metalliferous sediments. Min Eng 118:106-121. https://doi.org/10.1016/j. mineng.2017.12.014
- Karamalidis AK, Dzombak DA (2010) Surface complexation modeling: Gibbsite. John Wiley & Sons, Inc., Hoboken, NJ, USA.

- Leon R, Macias F, Canovas CR, Perez-Lopez R, Ayora C, Nieto JM, Olias M (2021) Mine waters as a secondary source of rare earth elements worldwide: The case of the Iberian Pyrite Belt. J Geoch Explor 224:106742. https://doi. org/10.1016/j.gexplo.2021.106742
- Liu H, Pourret O, Guo H, Bonhoure J (2017) Rare earth elements sorption to iron oxyhydroxide: Model development and application to groundwater. Appl Geochem 87:158-166. https:// doi.org/10.1016/j.apgeochem.2017.10.020
- Lozano A, Ayora C, Fernández-Martínez A (2019) Sorption of rare earth elements onto basaluminite: The role of sulfate and pH. Geochim Cosmochim Acta 258:50-62.
- Mwewa B, Tadie M, Ndlovu S, Simate GS, Mitinde E (2022) Recovery of rare earth elements from acid mine drainage: A review of the extraction methods. J Environ Chem Eng 10:107704.
- Nassar NT, Brainard J, Gulley A, Manley R, Matos G, Lederer G, Bird LR, Pineault D, Alonso E, Gambogi J, Fortier SM (2020) Evaluating the mineral commodity supply risk of the U.S. manufacturing sector. Sci Adv 6:eaay8647. https://doi.org/10.1126/sciadv.aay8647
- Nordstrom DK (2020) Geochemical modeling of iron and aluminum precipitation during mixing and neutralization of acid mine drainage. Minerals 10:547. https://doi.org/10.3390/ min10060547
- Office of Surface Mining Reclamation and Enforcement (2022) AMDTreat 6.0 Beta. https://www.osmre.gov/programs/reclaimingabandoned-mine-lands/amdtreat
- Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3—A computer program for speciation, batchreaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Tech Methods 6-A43. https://doi.org/10.3133/ tm6A43
- Pourret O, Davranche M (2013) Rare earth element sorption onto hydrous manganese oxide: a modeling study. J Colloid Interface Sci 395:18-23. https://doi.org/10.1016/j.jcis.2012.11.054
- Royer-Lavallée A, Neculita CM, Coudert L (2020) Removal and potential recovery of rare earth elements from mine water. J Indust Chem Eng 89:47-57. https://doi.org/10.1016/j. jiec.2020.06.010

- Rushworth DD, Cravotta CA III, Boyanova MI, O'Loughlin EJ, Kemner KM, Chan CS (2023) Developing an iron biomineral method for sustainable rare earth recovery from acid mine drainage. Am Geophys Union Annual Meeting, Abstract B11G-1874. https://agu.confex.com/ agu/fm23/meetingapp.cgi/Paper/1357758
- Schulz KJ, DeYoung JH Jr., Seal RR II, Bradley DC, eds. (2017) Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: US Geol Surv Prof Paper 1802. https://doi. org/10.3133/pp1802I
- Swedlund PJ, Webster JG (2001) Cu and Zn ternary surface complex formation with SO4 on ferrihydrite and schwertmannite. Appl Geochem 16:503-511. https://doi.org/10.1016/ S0883-2927(00)00044-5
- Swedlund PJ, Webster, JG, Miskelly GM (2003) The effect of SO4 on the ferrihydrite adsorption of Co, Pb and Cd ternary complexes and site heterogeneity. Appl Geochem 18:1671-1689. https://doi.org/10.1016/S0883-2927(03)00082-9
- Tonkin JW, Balistrieri LS, Murray JW (2004) Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model. Appl Geochem 19:29-53. https://doi.org/10.1016/S0883-2927(03)00115-X
- Vass CR, Noble A, Ziemkiewicz PF (2019a) The occurrence and concentration of rare earth elements in acid mine drainage and treatment

byproducts: Part 1—Initial survey of the northern Appalachian coal basin. Mining Metal Explor 36:903-916. https://doi.org/10.1007/ s42461-019-0097-z

- Vass CR, Noble A, Ziemkiewicz P (2019b) The occurrence and concentration of rare earth elements in acid mine drainage and treatment byproducts. Part 2—regional survey of northern and central Appalachian coal basins. Mining Metal Explor 36:917-929. https://doi. org/10.1007/s42461-019-00112-9
- Verplanck PL, Nordstrom DK, Taylor HE, Kimball BA (2004) Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation. Appl Geochem 19:1339-1354. https://doi.org/10.1016/j. apgeochem.2004.01.016
- Wang Y, Ziemkiewicz P, Noble A (2021) A hybrid experimental and theoretical approach to optimize recovery of rare earth elements from acid mine drainage precipitates by oxalic acid precipitation. Minerals 12:236. https://doi. org/10.3390/min12020236
- Yao W, Millero FJ (1996) Adsorption of phosphate on manganese dioxide in seawater. Environ Sci Tech 30:536-541. https://doi.org/10.1021/ ES950290X
- Zhang W, Honaker RQ (2018) Rare earth elements recovery using staged precipitation from a leachate generated from coarse coal refuse. Int J Coal Geol 195:189-199. https://doi. org/10.1016/j.coal.2018.06.008