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Extended Abstract
Discharges from coal mines that have low pH, hereinafter identified as acid mine 
drainage (AMD), commonly have elevated dissolved concentrations of sulfate (SO4), 
transition metals (Fe > Mn > Zn > Ni > Co > Cu > Cr > Cd), other metals (Al > Pb > 
Ga > Tl > In), and the lanthanide rare-earth elements, yttrium, and scandium (REYs: 
Y > Ce > Sc > Nd > La > Gd > Dy > Sm > Pr > Er > Yb > Eu > Ho > Tb > Tm > Lu) 
(Cravotta, 2008a). The REYs and many of these associated metals are among more 
than 50 “critical minerals” that are in great demand for clean energy and other modern 
technologies and for which global supply chains are vulnerable to disruption (Schulz 
et al. 2017; Nassar et al. 2020). The REYs occur as trace cations having predominant 3+ 
oxidation state (Me3+) in AMD and associated waters, with tendency to form aqueous 
and surface complexes (Verplanck et al. 2004; Pourret and Davranche, 2013; Liu et al. 
2017; Lozano et al. 2019). Dissolved REYs concentrations in AMD generally decrease 
as the pH increases, especially at pH > 5, accumulating with Fe, Al, and Mn that 
precipitate as hydrous metal oxides (HMeO) (Verplanck et al. 2004; Cravotta, 2008a; 
Vass et al. 2019a, 2019b; Hedin et al. 2020, 2024) (Fig. 1). In contrast, the concentration 
of dissolved SO4, the predominant anion in AMD, tends to remain elevated and largely 
uncomplexed across a wide range of pH, despite limited precipitation with Fe and Al 
hydroxysulfate compounds (e.g. jarosite, schwertmannite, basaluminite) (Cravotta, 
2008a, 2008b; Nordstrom, 2020) and/or adsorption by hydrous Fe, Al, and/or Mn 
oxides (Dzombak and Morel, 1990; Yao and Millero, 1996; Karamalidis and Dzombak, 
2010; Lozano et al. 2019).

Figure 1 Rare-earth elements (REYs) are elevated in AMD from coal mines in Pennsylvania 
(adapted from Cravotta, 2008a; Hedin et al. 2020). Dissolved REYs concentrations decrease with 
increased pH, exhibiting a break in slope at pH ≈5. The REYs accumulate with Fe, Mn, and Al in 
AMD treatment solids
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An economically sustainable approach for recovery of REYs and other associated 
critical minerals from AMD could offset treatment costs, depending on environmental 
and economic factors for extraction and transport (Fritz et al. 2021). Various AMD 
treatment strategies may be effective for concentrating REYs with AMD treatment 
solids through adsorption and/or precipitation with hydroxide, phosphate, or oxalate 
compounds (Ayora et al. 2016; Zhang and Honaker, 2018; Josso et al. 2018; Edahbi et 
al. 2018; Royer-Lavallée et al. 2020; Wang et al. 2021; Leon et al. 2021; Mwewa et al. 
2022; Hermassi et al. 2022). Nevertheless, impurities such as Fe, Al, Mn, Ca, and Mg, 
which are major components in typical AMD treatment solids (Hedin et al. 2020, 2024; 
Wang et al. 2021), tend to dilute the concentrations of more valuable trace components, 
increasing costs for transportation and processing. If REYs could be concentrated after 
first removing Fe and Al, without addition or precipitation of Mg and Ca, subsequent 
REYs-bearing fluids or solid(s) may have greater value for REYs recovery. 

This study employs version 1.0.3 of the PHREEQ-N-AMDTreat+REYs water-quality 
modeling tools (Cravotta, 2022), which were expanded from the original PHREEQ-N-
AMDTreat tools (Cravotta, 2021) to simulate changes in the concentrations of REYs, Fe, 
Al, Mn, SO4, and other solutes plus the formation of solids containing REYs. The models 
simulate the evolution of AMD in response to treatment, considering the composition 
and availability of HMeO sorbent and the potential for REYs compounds and other 
solids to precipitate. The models utilize the wateq4fREYsKinetics.dat database, which 
was expanded from wateq4f.dat (Ball and Nordstrom, 1991) provided with PHREEQC 
(Parkhurst and Appelo, 2013) to include thermodynamics data on REYs aqueous and 
surface species plus relevant REYs solid phases (hydroxide, carbonate, phosphate, and 
oxalate compounds). Surface species for REYs plus other cations and anions were added 
for hydrous ferric oxide (HFO: Dzombak and Morel, 1990), hydrous aluminum oxide 
(HAO: Karamalidis and Dzombak, 2010; Lozano et al. 2019), and hydrous manganese 
oxide (HMO: Tonkin et al. 2004; Pourret and Davranche, 2013), which constitute the 
total HMeO sorbent mass. 

To investigate potential effects of sorbent composition, pH, and SO4, a series of 
titration experiments was recently conducted in the laboratory during summer 2022. 
Each experiment used a solution with starting pH less than 2 that contained 50 µg/L 
of each of the 16 REYs plus 1 mmol/L of sorbent metal (Fe, Al, or Mn). To evaluate if 
REYs attenuation resulted by co-precipitation with Fe, Al, or Mn versus adsorption by 
HFO, HAO, or HMO, replicate experiments were conducted in parallel using the same 
REYs concentrations with initially aqueous (Fe3+, Al3+, or Mn3+) or solid (HFO, HAO, 
or HMO) forms. A hydrochloric acid (HCl) solution matrix was used for the first set 
of experiments, whereas a sulfuric acid (H2SO4) solution was used for the other sets 
of experiments. For all experiments, the pH was increased to pH values ranging from 
about 3 to 10 by titration with sodium hydroxide (NaOH). The dissolved concentrations 
of REYs and major metals were measured after 24 hours reaction time, centrifuging, 
and filtration (0.45-μm). 

To model the empirical titration results, new adsorption reactions and equilibrium 
constants were estimated using PEST version 17.5 (Doherty, 2015) in combination with 
PHREEQC (Parkhurst and Appelo, 2013). Instead of using estimates from linear free 
energy relations (LFER) for divalent cations, we (1) adapted the adsorption expression 
for Cr3+, the only trivalent cation reported by Dzombak and Morel (1990) (eq. 5), and 
also (2) determined new equilibrium constants for reactions where the uncomplexed 
cation is bound by adsorbed SO4 (eq. 7) (Table 1).

Speciation models using PHREEQC with the new adsorption expressions (eqs. 5 and 
7) accurately describe the observed adsorption of REYs to HFO (Fig. 2, bottom graphs). 
In contrast, modeled adsorption using equilibrium constants estimated by LFER (eq. 4) 
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Aqueous speciation reactions (Me+n is divalent (n=2) or trivalent (n=3) cation):

Me+n + H2O = MeOH(n-1) + H+ LogKOH MeOH1 (eq. 1)

Me+n + SO4
-2 = Me(SO4)(n -2) LogKS MeSO4 (eq. 2)

Surface speciation reactions (SURF is HFO, HAO, or HMO):

SURF_OH + SO4
-2 = SURF_OHSO4

-2 + H+ Log K1 SURF_OHSO4
-2 (eq. 3)

SURF_OH + Me+n = SURF_OMe(n-1) + H+     (LFER) Log K2 SURF_OMe(n-1) (eq. 4)

SURF_OH + Me+n + H2O = SURF_OMeOH(n-2) + 2H+ Log K3 SURF_OHMe(n-2) (eq. 5)

SURF_OH + Me(SO4)(n-2) = SURF_OMe(SO4)(n-3) + H+ Log K4 SURF_OMe(SO4) (n-3) (eq. 6)

SURF_OHSO4
-2 + Me+n = SURF_OMe(SO4)(n-3) + H+ Log K5 SURF_OMe(SO4) (n-3) (eq. 7)

Note that equation 4 is widely applied for divalent cations and to estimate adsorption equilibrium constants 
given the first hydrolysis constant (eq. 1) and linear free energy relation (LFER) expressions. Also, note that 
equation 7 is derived by subtracting equation 3 from the sum of equations 2 and 6 (Log K5 = Log K4 + Log KS 
– Log K1) 

Table 1 Aqueous and surface speciation reactions considered in PHREEQ-N-AMDTreat+REYs models

Figure 2 Model calibration to empirical data. Graphs on the left show lutetium attenuation by HFO 
slurry in sulfuric acid matrix. The top graph shows poor fit of the initial model based on LFER 
estimated log K values (eq. 3); the lower graph shows results using the “best-fit” adsorption log K 
values derived using PEST and new equilibrium expressions for trivalent cations that consider effects 
of pH and SO4 (eqs. 5, 6, 7). On the right, model curves are shown for all 16 REYs. The upper graph 
shows initial results using LFER estimates. The lower graph shows results using the new optimized log 
K values. The empirical data and model results indicate effective pH of adsorption shifted by 2 pH 
units from approximately 6.5 (LFER) to 4.5 (optimized)
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greatly underestimated the observed attenuation of REYs at pH <6, especially in the 
presence of SO4 (Fig. 2, top graphs). The new model results are consistent with prior 
reports for AMD systems where ternary complexes with SO4 resulted in enhanced 
adsorption of various divalent cations (Me2+: Cd, Cu, Co, Pb, Ni, Zn) by HFO (Swedlund 
and Webster, 2001; Swedlund et al. 2003) and trivalent REYs (Me3+) by HAO (Lozano 
et al. 2019). Therefore, version 1.0.3 of PHREEQ-N-AMDTreat+REYs (Cravotta, 2022) 
includes the new equilibrium reactions for adsorption of Me2+ and Me3+ by HFO, HAO, 
and HMO plus interactions of those cations as with adsorbed SO4 (HFO_SO4

-2 and 
HFO_SO4

-2).
Potential treatment strategies that could feasibly produce a concentrated REYs 

extract from AMD are evaluated using PHREEQ-N-AMDTreat+REYs models. For a 
passive treatment case, Hedin et al. (2024) reported REYs accumulated in limestone 
beds can be accurately simulated using the “CausticTitrationMix2.exe” tool, which 
indicated attenuation of REYs mainly with HAO and HMO. For an active treatment 
case, a coal-refuse facility with highly acidic leachate having elevated concentrations of 
Fe, Al, Mn, and REYs currently utilizes lime neutralization, which causes precipitation 
of Fe, Al, and REYs into complex Fe-Al-Ca rich sludge mixture. The current treatment 
and two alternative strategies that could concentrate REYs were simulated with the 
“TreatTrainMix2REYs.exe” tool (Fig. 3). The lime treatment to pH ≈8.7 removes REYs 
with the sludge mixture. In contrast, alternative strategies using H2O2 to oxidize FeII 
demonstrate potential for removal of most Fe and Al without substantial removal of 
REYs. In one case, NaOH is added to initial pH 3 followed by aeration to precipitate 
Fe and Al oxyhydroxides at pH <4.5. Subsequent aeration and further increasing pH 
with limestone promotes adsorption of REYs by HAO and HMO that form thereafter. 
In another case, NaOH and NaH2PO4 are added to precipitate REY-PO4 after H2O2 
addition (e.g. Hermassi et al. 2022). In both cases, REYs-enriched solids produced by 
the alternative treatments contain a small fraction of the initial Fe and Al and most of 
the REYs. Bench-scale testing of the simulated, sequential treatment steps to concentrate 
REYs into solids may be considered, guided by modeling, to verify results and evaluate 
extraction methods to re-mobilize the REYs from the various solid components (e.g. 
Rushworth et al. 2023; Boothe et al. 2024).
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By combining the PHREEQ-N-AMDTreat+REYs water-quality modeling tools with 
the AMDTreat 6.0 cost-analysis model (Office of Surface Mining Reclamation and 
Enforcement, 2022), a user may (1) identify and evaluate strategies for AMD treatment 
that result in effective REYs recovery and (2) estimate costs for installation and operation 
of relevant treatment steps. 
Keywords: Resource recovery, rare-earth elements, adsorption, aqueous speciation, 
PHREEQC, AMDTreat
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