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Extended Abstract
Manganese (Mn) is a common water contaminant at coal and metal mine sites. Its 
treatment by conventional methods involves strong oxidants or caustic chemicals that 
are hazardous, expensive, and produce copious amounts of sludge. Mn can be treated 
passively in oxic aggregate beds by biological and/or physiochemical processes (Luan  
et al. 2012; Means and Rose 2005; Santelli et al. 2010; Santelli et al. 2011; Tan et al. 2010).

Pennsylvania’s Department of Environmental Protection (PADEP) recently proposed 
to lower the current in-stream Mn criterion from 1.0 mg/L Mn to a human health-based 
criterion of 0.3 mg/L Mn (PA DEP 2020a; PA DEP 2020b). Public objections to the 
proposed changes included the high costs of meeting the standard with conventional 
chemical treatment (Burgos 2021). Passive treatment was not considered a practical 
option for high flows because of its large land requirements and uncertain ability to 
lower Mn to less than 0.3 mg/L.

In response to these concerns, a project was conducted that investigated  
1) Mn removal by nineteen existing, full-scale passive treatment systems, and 2) two 
experimental, pilot scale oxic aggregate beds. While all full-scale passive systems 
removed Mn, only one system removed Mn below 0.3 mg/L Mn.

The two experimental, pilot scale units were located at two large conventional mine 
water treatment systems in Pennsylvania (Hollywood and Brandy Camp) and received 
Mn-contained effluent from the systems. The Hollywood system treats low pH mine 
drainage with hydrated lime and polymer and metals are settled in a concrete clarifier. 
The Brandy Camp system treats low pH mine drainage with hydrogen peroxide, polymer, 
and lime slurry and metals are settled in a series of ponds followed by a wetland.

The pilot scale units were above ground, steel roll off containers. Hollywood unit 
contained 33 t of Mn oxide coated limestone from an operational passive Mn removal 
system (Fig. 1). The aggregate gradation was AASHTO #3 (AASHTO 2013), which 
has an average particle diameter of 38 mm and a calculated surface area of 0.72 cm²/g 
(calculated using Cravotta 2021). The Brandy Camp pilot contained 11 tonnes of 
limestone from a local limestone quarry. The aggregate gradation was AASHTO #8, 
which has an average particle diameter of 7 mm and calculated surface of 4.44 cm²/g 
(Cravotta 2021). Experiments were conducted by varying flow rates and measuring 
influent and effluent chemistry.

The Hollywood unit received circumneutral water containing an average 0.6 mg/L 
dissolved Mn and 1.5 mg/L particulate Fe and was operated for 10 months from 
November 2021 to August 2022. The Brandy Camp unit received circumneutral water 
containing an average 5.8 mg/L dissolved Mn and 1.7 mg/L particulate Fe and was 
operated for 12 months from 2022 to June 2023. Both systems decreased Mn to less 
than 0.3 mg/L Mn. However, the kinetics of Mn removal, determined from changes in 
Mn concentration and theoretical retention times, differed substantially.
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Th e Hollywood system operated at 2 to 5 hour retention times and Mn concentrations 
were decreased by about 0.3 mg/L regardless of fl ow rate (Fig. 2). Effl  uent Mn 
concentrations varied with infl uent Mn concentrations and were not consistently less 
than 0.3 mg/L. Th e system exhibited fi rst order Mn removal kinetics, similar to abiotic, 
physio-chemical Mn removal kinetics (Morgan, 2005).

Figure 1 Hollywood pilot scale system in a 23 m3 roll off  container. Th e Brandy Camp pilot system was 
similar but an 8 m3 roll off  container

 

Figure 2 Hollywood system infl uent and effl  uent Mn concentrations and theoretical retention time (TRT)
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Th e Brandy Camp system operated at 1 to 4 hour retention times and except for 
startup and immediately aft er changes (e.g. dramatic increase in fl ow rate, restarting 
aft er drained empty), regularly decreased Mn concentrations to less than 0.3 mg/L 
(Fig. 3). Th e system was operated without interruption for 180 days (two months in fall 
2022 and three months in spring/summer 2023). During these 180 days of operation, 
the average effl  uent concentration was 0.10 mg/L Mn. Th e system exhibited pseudo-
zero order Mn removal kinetics, similar to biological Mn removal kinetics (Zhang et 
al. 2002).

Th e Brandy Camp pilot unit removed Mn to a lower concentration and at a faster rate 
compared to the Hollywood pilot unit. Both the physical and biological diff erences of 
these systems are likely important. Physically, the Brandy Camp unit contained smaller 
aggregate with about fi ve times more surface area than the Hollywood pilot system or 
other full-scale passive systems. Biologically, the Brandy Camp unit was preceded by a 
wetland which may provide nutrients to microbes involved in Mn removal whereas the 
Hollywood unit was preceded by a concrete clarifi er.

Th e rapid and consistent removal of Mn by the Brandy Camp system shows the 
opportunity for optimized passive removal of Mn. Th e Brandy Camp unit consistently 
met PADEP’s 0.3 mg/L Mn effl  uent standard at 1/10th to 1/20th the retention time of 
existing passive treatment systems. Th ese results suggest that passive treatment can play 
an important role in complying with lower Mn limits.

Figure 3 Brandy Camp system infl uent and effl  uent Mn concentrations and theoretical retention time
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