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Abstract
The performance of active and passive water treatment systems can be negatively 
influenced by seasonal and diurnal water quality and quantity fluctuations of the 
feedwater. Treatment performance can be improved by proactively modifying the 
water management strategy in response to these fluctuations. Employing modern, full, 
or partially automated configurations as part of the water management strategy can 
efficiently optimize these types of water treatment systems.

These automated system configurations build upon existing components with 
emerging technologies resulting in the following innovative data workflow: (a) 
automated, frequent collection of data at various treatment system monitoring points 
using sensor-based technologies, (b) automated alarms that can signal remote system 
upset conditions (compliance exceedances, pump malfunction, clogging, fouling etc.), 
(c) telemetry-based data upload and ingestion by a cloud-based data management 
system, (d) automated data cleaning and preparation pipelines, and (e) the use of 
conventional statistical and computational techniques and, when necessary, more 
advanced algorithms such as machine learning to analyze incoming data streams.

This workflow promotes intelligent, real-time guidance on water treatment and 
management decisions, such as treatment methods, dosage frequency, water diversion, 
and more, can be provided in near real-time through visualization, reporting, dashboards, 
and PLC controls. Results of the implementation of various components of this workflow 
demonstrate benefits such as improved treatment efficiency, more reliable operation, 
compliance with standards at discharge points, and overall reduction in labor, reagent 
costs, and energy demand. Additionally, transferring all system data, including sensor 
data, images, operator logs, and legacy PDFs, to a cloud-hosted data warehouse opens 
important opportunities for enhancing value extracted from collected data.

An example application is provided for a remote semi-passive treatment system 
designed to treat waste rock drainage prone to upset conditions due predominantly 
to large fluctuations in water volume and difficulty staffing an experienced operator. 
Finally, the authors discuss how this workflow could be used to optimize a full-scale 
active treatment system with multiple sensor locations and numerous real-time data 
streams using a digital twin/machine learning approach.
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Introduction
The advent of modern sensor technology, 
cloud-based data management, and advanced 
data analytics methods (e.g. machine learning) 
provide operators with new opportunities 
to optimize the full spectrum of passive to 

active water treatment systems. In this paper, 
the authors summarize the components of 
a fully automated water treatment system 
data collection, management, analysis, and 
reporting/visualization workflow and discuss 
the benefits of such a workflow.
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This innovative workflow addresses 
the following challenges that many 
water treatment operators currently face. 
Automated sensor-based data collection 
substantially reduces or eliminates the need 
for expensive, manual sampling and lengthy 
laboratory analysis, and provides a source 
of high frequency data. Treatment operators 
often struggle to maintain and train staff 
to collect consistent and reliable system 
performance data. Data is often not collected 
at a sufficient frequency to adequately monitor 
system performance towards optimization 
and commercial laboratory analysis can 
take a month or longer, especially when 
labs are backed up. Sensor-based data can 
be processed on edge devices (for real-time 
decision making), within the Supervisory 
Control and Data Acquisition (SCADA) 
system or uploaded via telemetry to cloud. 
Data management on the cloud includes 
development of a universal schema, data 
validation, feature engineering, redundancy 
and disaster recovery, and integration with 
field-based monitoring systems. And finally, 
real-time or batch analytics on the cloud 
facilitates intelligent decision-making by way 
of visualization, reporting, dashboarding, 
recommendation engines, and automation 
of Programmable Logic Controller (PLC) 
devices for situations where typical PLC 
feedback loops are insufficient.

Field Data Collection and 
Management Methods
A typical water treatment control system 
is comprised of passive components (i.e. 
sensors), active components (e.g. valves and 
pumps), Programmable Logic Controller 
(PLC), and Supervisory Control and Data 
Acquisition (SCADA) system.

Sensors provide critical input to the 
treatment system and can come in many 
different forms with equally as many 
functions. The array of sensors in a treatment 
system are often distributed at the influent, 
across the treatment train at key locations, 
and at the effluent. Measurements made 
by the sensors are transmitted back to the 
PLC (via a wired connection, radio, cell, 

or even satellite) where logical commands 
are applied, based on the sensor data, to 
adjust controls such as valves and pumps. 
Many sensors currently on the market 
utilize microcontrollers to manage power, 
data requests, and data transmissions in a 
digital format rather than transmitting raw 
analog (e.g. 4–20 mA) measurements. The 
computing power of these microcontrollers 
has grown substantially over the past decade 
and many microcontrollers on the market 
today have the capability of efficiently storing 
and running machine learning algorithms 
that could be beneficial for locally identifying 
imminent failures of the sensor or equipment. 

Peng, et al. (2021) describe a principal 
component analysis (PCA) model for 
predicting fault detections in submersible 
pumps and Yang, et al. (2022) describe a 
denoising autoencoder and support vector 
machine (DAE-SVM) approach for fault 
detection in submersible pumps. Both 
methods may be applicable for deployment on 
edge devices. The benefits of employing PCA 
for fault detection include improved efficiency, 
simplicity, and speed. Limitations include the 
assumption of data linearity and an emphasis 
on variance, which might not point to the 
most relevant features for fault detection. 
Application of DAE-SVM for fault detection 
has the advantages of noise reduction, high 
accuracy combined with robust feature 
representations, and the ability to capture 
non-linear relationships in the dataset. 
For environments where computational 
resources are not severely limited and where 
accuracy in detecting complex fault patterns 
is paramount, DAE-SVM would likely be 
the preferable choice. However, for simpler 
scenarios or when computational efficiency 
is a priority, PCA could provide a viable and 
effective solution.

PLCs act as a relay bank wherein PLCs 
apply a few different basic algorithms (e.g. 
on/off, feedback–proportional, integral, 
derivative) to control the active components 
based on the passive component inputs. PLCs 
are suitably designed to provide real-time 
control based on immediate feedback, trigger 
alarms when equipment or sensors are not 
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operating within predefined parameters, 
locally controlled via Human Machine 
Interfaces (HMIs), and remotely controlled via 
the SCADA system. PLCs communicate with 
peripheral devices (sensors, valves, pumps) 
via one of many different communication 
protocols. Since all of the logical algorithms 
to run the treatment system are inherently 
embedded in the PLC, the PLC can 
autonomously control the treatment system 
without internet connection.

The SCADA system is both hardware and 
software designed to provide a higher level of 
supervision over the treatment process, store 
data collected through the PLC, monitor and 
control at an enterprise level (i.e. over more 
than one treatment system), provide remote 
access to the PLC, and provide data analytics 
and visualization. Many SCADA systems 
deployed today have the ability to store data 
locally and in the cloud. Pushing treatment 
system data into the cloud via the SCADA 
can accommodate higher order data analytics 
and data visualization.

Overall, in typical water treatment 
systems, PLCs act as front-end devices 
interfacing with the passive and active 
components of the treatment system while 
the SCADA system provides a centralized 
location for visualizing the treatment process 
and treatment process control. This type of 
control system is very effective in systems 
that have little to no lag time in the “dose-
response” reactions or are overseen by highly 
skilled operators that have spent many seasons 
overseeing the particular treatment system. 
When systems require substantial foresight 
by experienced operators to anticipate 
potential issues or “ramp up” the treatment 
system’s capacity (in the case of some semi-
passive treatment systems), transmission of 
data to a centralized server (or cloud) can 
provide a means for effective communication 
between the operators and the decision-
makers through the use of visualizations 
(i.e. a dashboard) as well as making the data 
available to more sophisticated predictive 
algorithms that ultimately can assist both 
operators and decision-makers with making 
prompt and accurate decisions.

Cloud Management
Field sensor-based data uploaded by telemetry 
can be stored in popular cloud-based data 
storage platforms such as Amazon Web 
Services (AWS), Microsoft Azure, Google 
Cloud Platform (GCP) etc. These platforms 
provide ample advantages to data management 
workflows such as scalability, accessibility, 
security collaboration and cost-effectiveness. 
Plus a cloud platform can be used to host 
highly different data types. For example, site 
photos can be seamlessly incorporated with 
water chemistry data, alongside information 
extracted from legacy PDFs, utilizing cloud 
OCR services like AWS Textract. 

The process of managing sensor data in 
the cloud includes cloud database setup: the 
initial step in the process is selection of the 
cloud platform suitable to the needs of the 
project followed by creating a cloud database. 
Transmitting data to the cloud relies on 
remote sensors that can be configured to 
transmit data to the cloud as explained 
above; cloud platforms provide encryption 
tools and services to ensure the security of 
the data. An automated workflow can be 
created using Python scripts to streamline 
the process of ingesting data into cloud 
storage. This workflow incorporates a 
data dictionary to standardize datasets 
according to project requirements. Quality 
assurance and quality control (QA/QC) 
measures, including verifying data units 
and organizing information for convenient 
retrieval and analysis, are integrated into the 
workflow. Cloud platforms provide various 
tools for real-time processing of the data. 
For example, AWD Lambda enables code 
execution bypassing the need to provision 
or manage servers. With AWS Lambda, 
code can be executed in response to events 
or triggers without the need to worry about 
the underlying infrastructure. Analytics 
techniques range from simple statistical, 
to numerical and graphical methods, to 
complex unsupervised and supervised 
machine learning algorithms. Reports, 
graphs, dashboards, and recommendation 
engines are implemented to help operators 
make more informed decisions. The cloud-
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based database can be integrated to track 
the performance and health of the remote 
sensors and the overall data management 
infrastructure. Backup and disaster recovery 
strategies can be implemented to safeguard 
against data loss. Cloud platforms often 
provide tools for automated backup and 
recovery. Workflows can be developed to 
conduct thorough testing to ensure that data 
is being collected and handled accurately.

Case Study
It is common to witness the failure of semi-
passive treatment systems after only a few 
years of operation. Poor or inadequate 
design is often thought to be the culprit, 
but recent advances in automation have 
allowed for restored operation of such 
systems and suggest difficulty with manual 
system operation may be the most critical 
contributor to underperformance. 

One such example exists with a 
hypothetical site in a rural area (reflective of 
two separate, confidential sites we’ve worked 
on and combined here for ease of discussion), 
where a remote bio-treatment system 
designed to treat elevated concentrations of 
sulfate and nitrate in seepage emanating from 
the toe of a waste rock pile partially failed 
after only two years of operation. Failure 
of the system was related to unmanaged 
seasonal fluctuations in water volume and 
due to inconsistent manual operation. The 
semi-passive system was selected, in part, 
to accommodate ease of operation given the 
remote site setting; however, this expectation 
of easy operation accompanied by a strong 
seasonal hydrologic pattern led to annual 
losses in treatment efficiency followed by 
complete failure after four years. 

System maintenance and automation 
implemented nearly a decade after initial 
system start-up led to improved treatment 
performance by providing a linkage between 
inflow volume and conductivity (through 
sulfate-conductivity correlations established 
over the period of operation), whereby sulfate 
loading could be automatically calculated and 
reagent dosing could be adjusted in real time 
without the need for manual adjustments by 
a dedicated operator.  

Substantial additional benefits can be 
realized through application of predictive 
machine learning tools that allow anticipation 
of variables such as the increased flow and 
load as observed in the case study example. 
One such univariate tool was described by Do 
et al. (2022), where they utilized a seasonal 
autoregressive integrated moving average 
(SARIMA) forecasting model to predict 
wastewater inflow at a wastewater treatment 
plant. Azad et al. (2022) identified that a 
SARIMA model fused with an artificial neural 
network model (ANN) outperformed the 
SARIMA model alone for predicting water 
levels within a reservoir. Other variables that 
may incur delays in the system that exceed 
the PLC feedback loop and therefore benefit 
from predictive automation could include 
microbial growth and oxidation reactions 
(i.e. kinetic variables). 

Conclusions
The implementation of modern sensor 
technology in water treatment systems, when 
coupled with edge computing, data upload 
to the cloud via telemetry, and cloud-based 
data management, analysis, and decision-
making can provide operators with new 
opportunities to optimize the full spectrum 
of passive to active water treatment systems. 
This workflow, when fully automated can 
be deemed a Digital Twin, which can be 
defined as a digital replica (the cloud-based 
data management workflow for remote 
sensor data) of a physical asset (the water 
treatment system) for purposes of remote, 
automated management and optimization 
of the asset. While a full-scale digital twin 
should be considered aspirational for certain 
water treatment systems as its development 
is highly dependent on available sensor 
technology, and the history, volume and types 
of data that have been collected, it represents 
the future of water treatment systems 
management. Once a history of data has been 
collected, digital twins can be used to forward 
predict operating conditions, which is useful 
for anticipating changes to influent water 
chemistry and volume, potential compliance 
violations, and systems failure. When such 
issues are predicted in advance, they can be 
managed proactively.
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