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Abstract
Mining plays a crucial role in economic development by providing raw materials that 
drive social progress. In this context, water is a transversal and indispensable element at 
all stages. However, with the increasing demand for water and climate change, efficiency 
in the use of water resources has become a priority. Therefore, it is essential to develop 
tools that enable effective water resource management in mining, promoting cost 
reduction, mitigating water risks, and meeting environmental and social requirements, 
as well as creating competitive advantages for the sector through transparency and 
attracting investments.

The innovative approach of this work lies in the development of regression models 
to analyze the relationship between iron ore production, mineral beneficiation method, 
rainfall seasonality, and water demand. Using data from six Brazilian mining complexes 
over 89 months, the research seeks to establish correlations that can guide strategic 
decisions and increase water efficiency. Additionally, it is important to highlight that 
there are few studies in the literature that quantify water use in relation to production, 
differentiating Operational Water, Total Intake, and Reuse.

The main findings indicate that simple linear regression (SLR) is more effective for 
analyzing Operational Water and Reuse, while generalized Poisson linear regression 
(GPLR) presents lower errors for Total Intake. The research also reveals that both Total 
Intake and Reuse have lower correlation with the production variable. This is because 
total intake is more related to the volume of dewatering water than to the ore processing 
itself. In other words, most of the dewatering volume is returned to the environment 
without use and is not part of the operational water computation. Regarding the reuse 
portion, it is mainly related to units with dams, i.e., units with wet beneficiation. 
Furthermore, it occurs to a greater extent when there is robust water infrastructure 
capable of treating/reusing non-new water volumes.

The applications of this work are vast, including the planning and analysis of water 
use in mining enterprises. The developed models can be used as tools to increase 
transparency, attract investments, and create competitive advantages. The implications 
include promoting sustainable practices, reducing operational costs, and mitigating 
environmental impacts, contributing to water security and the sustainability of the 
mining sector.
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Introduction 
Mining is essential for economic and social 
development, with water being a critical 
input throughout all mining phases. In 2023, 
Brazil exported 378.5 million tons of iron ore, 
valued at US$30.5 billion, and consumed an 
average of 0.305 m3 of new water per ton of 
ROM (IBRAM 2023, 2024). Consequently, 
it is estimated that the sector utilized appro-
ximately 115.4 million m3 of new water in its 
production processes that year.

However, freshwater consumption limits 
are rapidly approaching (GERTEN et al., 2013) 
or the available volume may have already 
been exceeded (Grafton et al. 2013; Rosa et 
al. 2019). The increasing water demand is 
driven by population and economic growth 
across various sectors, including industry, 
agriculture, livestock, energy, and mining. 
The World Resources Institute reports that 
a quarter of the global population lives in 
countries with extreme water stress, with 
over 1 billion people projected to face this 
situation by 2050.

Considering the reliance on water in 
iron ore mining, the rising water demand 
over the years, and the increasing frequency 
of global water scarcity events, it is crucial 
to thoroughly understand the operational 
water balance and actual water demand in 
mining projects. This understanding enables 
the prioritization of sustainable sources, the 
selection of water management strategies, 
the proper planning of necessary water 
infrastructure, and the enhancement of 
freshwater use efficiency, thereby preparing 
the sector for potential shortages or changes 
in supply conditions.

Water estimates for iron ore processing 
are limited in the literature, particularly 
when accounting for various components of 
the operational water balance, such as water 
capture for drawdown, freshwater, and reused 
water. Additionally, beneficiation methods 
(dry, wet or natural moisture processing) must 
be differentiated when calculating the project’s 
overall water demand, as each method has 
distinct water requirements and infrastructure, 
influencing the feasibility of water reuse.

In the book “Perspectives and Advances 
in Water Resources Management in Mining”  

(ANA and IBRAM, 2024) the average specific 
water use per ton produced for different 
products was calculated by dividing the 
annual volume declared in grant applications 
by the annual ore production. However, this 
granted volume does not account for water 
capture needed for drawdown or the water 
used in the production process. Additionally, 
this indicator overlooks reused water, which 
constitutes most of the water consumption 
in an iron ore plant (approximately 80%) and 
treats all iron ore mining methods (natural 
moisture and dry processing) as similar. 

NORTHEY et al., (2019) analyzed 359 
public mining reports for various minerals 
and found water withdrawals ranging from 
0.13 m³ to 17.29 m³ per ton of processed ore. 
This research supports the assertion that it 
is not feasible to group or model a range of 
water use for different production processes. 
Furthermore, the indicator used in the 
research refers to total water withdrawal, not 
the new water used in operations. Therefore, 
in the case of iron ore, the water quantification 
presented by the author is more related to 
the water demand for drawdown than the 
operational use of new water.

The objective of this work is to develop a 
tool to quantify the water demand required 
for an iron ore mining project, from 
extraction to the final product. This tool will 
consider the total water collected, water used 
in the production process, and reused water. 
Linear regression models will be employed to 
compare water demand relative to the volume 
of raw ore processed (ROM) for different 
mineral processing methods. The following 
sections present the theoretical framework, 
methods, results, and conclusions necessary 
for understanding and executing the project.

Methods 
The methodological steps of this study are 
as follows: 1) Data collection, including the 
definition of samples and variables; 2) Statis-
tical treatment and analysis; 3)  Correlation 
analysis; 4) Development of linear regression 
models (both simple and generalized); and 
5) Model diagnostics. The following sections 
provide detailed descriptions of each step.



IMWA 2025 – Time to Come

10531053Valente, T., Mühlbauer, R., Ordóñez, A., Wolkersdorfer, Ch.

Database, variables and sample
The primary data utilized in this study 
encompass operational water monitoring 
and mining reports from six Brazilian iron 
ore mining complexes over a period of 89 
months (January 2017 to May 2024). The 
analyzed complexes include Serra Sul (PA/
BR), Serra Leste (PA/BR), Serra Norte (PA/
BR), Itabira (MG/BR), Vargem Grande (MG/
BR), and Paraopeba (MG/BR), resulting in 
a total of 2,670 observations. The variables 
incorporated into the linear regression model 
are Operational water, Total water withdrawn, 
Reused water, Plant feed, and Type of mineral 
processing.

Statistical treatment and analysis  
During the analyzed period, operations 
experienced several events, including 
production shutdowns, changes in the 
production process, alterations in data con-
soli dation personnel, and variations in water 
volume estimates. These factors increase 
the likelihood of data variability due to the 
absence of a verification or standardization 
process. Therefore, it is crucial to analyze and 
process the data, identifying and removing 
potential outliers to enhance data reliability 
before utilizing them in the proposed models.

Outliers were detected using the 
Interquartile Range (IQR) rule, which employs 
values estimated by regression methods 
(Jeong et al. 2017) to define acceptance or 
rejection limits for measured values. The 
normality of the data will be assessed using 
the Shapiro-Wilk test to determine whether 
parametric or non-parametric hypothesis 
tests should be applied. Visualizations such as 
boxplots, histograms, and scatter plots will be 
generated to examine the data set.

Correlation analysis 
To understand the correlation between the 
variables in the model, Pearson’s correlation 
coefficient will be employed. This coefficient 
is a bivariate measure of the association 
(strength) of the relationship between two 
variables (Paranhos et al. 2014). It ranges from 
-1 to 1, where the sign indicates the direction 
(positive or negative) of the relationship, 
and the value indicates the strength of the 
relationship. A perfect correlation (-1 or 1) 

signifies that the value of one variable can be 
precisely determined by knowing the value of 
the other (Elian 1988; Paranhos et al. 2014). 
Conversely, a correlation of zero indicates no 
linear relationship between the variables. 

Simple linear regression model (SLR) 
According to (Elian 1988), linear regression 
is a global method and is based on the use of 
only one equation to explain the relationship 
between the variables studied (dependent and 
independent). The simple linear regression 
model (SLR) expected for the present study is 
given by the equation below.

yi  = β0 + β1 . X1 + εi

Where yi is the i-th value of the response 
variable, β0 e β1 are the parameters 
(regression coefficients), X1 is the i-th value 
of the predictor variable and εi is the random 
error term.

Generalized linear model (GLM)
When aiming to associate a dependent 
variable with independent variables, linear 
modeling is commonly employed. However, 
a limitation of linear models is that the 
dependent variable must follow a normal 
distribution Akaike (1974). Therefore, it is 
necessary to seek an alternative method to 
satisfactorily associate the dependent and 
independent variables.

According to Dobson (2001), the gene-
ralized linear model (GLM) allows for 
the adjustment of regression models for 
univariate response data that follow a 
distribution from the exponential family. 
The exponential family includes distributions 
such as normal, binomial, Poisson, geometric, 
negative binomial, exponential, gamma, and 
inverse normal.

The generalized linear model with Poisson 
distribution is given by the equation below:

ln(yi ) = β0 + β1 . X1 + β2 . X2 + ... + βn . Xn + εi

Where yi is the i-th value of the response 
variable, β0, β1 e βn are the parameters 
(regression coefficients), X1, X2 e Xn are 
known constants and εi is the random  
error term.
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Model diagnosis 
The selection of the optimal regression 
model will be based on statistical criteria, 
including the coefficient of determination 
(R2), standard error (σ), root mean-square 
deviation (RMSD), and Akaike information 
criterion (AIC). RMSD measures the 
difference between the values predicted by 
a model and the observed values, calculated 
as the square root of the mean of the squared 
errors. The AIC method, proposed by Akaike 
(1974), addresses model identification 
from the perspective of statistical decision 
theory, facilitating the selection of the 
most appropriate loss function for model 
adjustment.

Results
Statistical treatment and analysis
Statistical analysis of the data was conducted 
by calculating the means, medians, standard 
deviations, minimums, and maximums 
(Table 1). Comparing the standard devia-
tion (σ) with the mean of the variables 
(Operational water, Total water withdrawn 
and Reused water) reveals significant varia-
bility within the complexes, as well as for 
plant feed. This variability can be attributed 
to the dynamic nature of operations, which 
experience fluctuations in production due to 
market demand, climatic seasonality, process 
maturity, changes in production routes, and 
other factors.

Table 1 Descriptive statistics of the variables Operational water, Total water withdrawn and Reused water 
(m³) and Production unit (t).

Complex Variable Mean Median σ  Minimum Maximum

Itabira Complex

Operational water (m³) 782,288 706,551 389,185 176,184 2,134,528

Water Withdrawn (m³) 1,239,970 1,177,568 418,597 607,152 2,610,282

Reuse water (m³) 5,248,472 5,121,209 742,584 3,942,365 6,855,672

Production unit (t) 4,194,529 4,209,416 470,050 3,056,534 5,270,583

Paraopeba Complex

Operational water (m³) 484,760 509,734 185,883 194,557 1,009,908

Water Withdrawn (m³) 1,243,860 1,202,686 263,204 356,785 1,859,243

Reuse water (m³) 1,154,011 790,026 921,491 162,860 2,916,920

Production unit (t) 1,694,792 1,414,756 897,347 385,308 3,442,221

Vargem Complex 
Grande

Operational water (m³) 860,612 877,598 359,375 82,480 1,602,300

Water Withdrawn (m³) 1,815,025 1,761,688 266,792 1,403,991 2,662,421

Reuse water (m³) 4,447,241 1,589,233 5,415,777 0 18,295,521

Production unit (t) 3,306,432 3,261,708 1,454,959 125,848 6,023,899

Serra Leste Complex

Operational water (m³) 18,834 18,054 8,159 4,494 38,574

Water Withdrawn (m³) 19,654 20,664 8,791 4,494 40,645

Reuse water (m³) 0 0 0 0 0

Production unit (t) 429,488 410,497 95,215 73,559 573,849

Serra Norte Complex

Operational water (m³) 645,536 606,621 271,821 168,415 1,221,619

Water Withdrawn (m³) 1,563,351 1,544,904 581,663 386,026 5,185,788

Reuse water (m³) 2,856,345 2,841,263 818,965 1,127,990 6,475,531

Production unit (t) 9,687,420 9,646,836 2,458,428 4,669,465 13,838,155

Serra Sul Complex

Operational water (m³) 86,213 82,216 27,926 34,392 151,884

Water Withdrawn (m³) 580,961 369,284 569,485 34,392 1,795,160

Reuse water (m³) 5,513 2,123 7,717 0 34,665

Production unit (t) 6,038,252 6,447,528 2,098,740 934,899 9,643,820
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Th e Shapiro Wilk test was used to analyze 
the normality of the data. Most of the 
variables in the complexes do not follow a 
normal distribution. Although a non-normal 
distribution of most of the variables was 
observed, it is possible to perform a regression 
model with the data from the 6 complexes 
to analyze the relationship between the 
variables and the Production Unit. Linear 

regression assumes that the residuals (errors) 
of the model follow a normal distribution, 
not necessarily the independent or dependent 
variables. Furthermore, if the residuals do not 
follow a normal distribution, transformations 
in the variables (such as logarithm or square 
root) can be considered to improve the 
normality of the residuals.

Figure 1 Model behavior: 1) SLR Operational Water processing at natural moisture, 2) GLM Total water 
withdrawn at natural moisture and 3) GLM Reuse water at wet processing.

Table 2 Summary of analysis of SLR and Poisson GLM. Gray color indicates the best-fi tting model.

Operational Water (m³) x Production Unit (t)

Proc. Model β0 σ (β0) β1 σ (β1) R² σ (Res.) p-value AIC RMSD

H
SLR -1.01E+05 8.60E+04 7.70E-02 8.61E-03 0.485 1.96E+05 < 2e-16 1.87E+03 2.13E+04

GLM 1.28E+01 2.03E-04 2.24E-07 5.59E-11 0.410 2.33E+07 < 2e-16 2.33E+07 2.61E+03

NM
SLR 1.64E+04 2.08E+03 1.13E-02 4.29E-04 0.821 1.69E+04 < 2e-16 2.49E+03 1.38E+03

GLM 1.00E+01 7.37E-04 2.04E-07 1.16E-10 0.790 9.41E+05 < 2e-16 9.43E+05 1.65E+03

W
SLR 2.59E+05 3.99E+04 1.53E-01 1.24E-02 0.407 2.74E+05 < 2e-16 4.79E+03 1.84E+04

GLM 1.22E+01 5.93E-04 1.21E-07 5.56E-11 0.490 4.98E+06 < 2e-16 4.98E+06 1.53E+03

Total capture (m³) x Production Unit (t)

Proc. Model β0 σ (β0) β1 σ (β1) R² σ (Res.) p-value AIC RMSD

H
SLR 4.19E+05 2.22E+05 1.18E-01 2.22E-02 0.249 5.07E+05 8.64E-07 2.03E+03 5.50E+04

GLM 1.40E+01 1.25E-04 5.64E-08 3.75E-11 0.090 2.39E+07 <2e-16 2.39E+07 2.33E+04

NM
SLR -7.34E+04 4.45E+04 1.14E-01 9.17E-03 0.505 3.62E+05 < 2e-16 3.41E+03 2.95E+04

GLM 1.03E+01 4.96E-04 4.29E-07 6.77E-11 0.720 2.48E+07 <2e-16 2.49E+07 7.26E+02

W
SLR 1.23E+06 5.76E+04 8.27E-02 1.79E-02 0.088 3.95E+05 6.70E-06 4.79E+03 1.84E+04

GLM 1.35E+01 3.68E-04 7.58E-08 3.53E-11 0.280 1.17E+07 <2e-16 1.17E+07 4.41E+02

Reuse (m³) x Production Unit (t)

Proc. Model β0 σ (β0) β1 σ (β1) R² σ (Res.) p-value AIC RMSD

H
SLR 3.59E+06 3.52E+05 -7.55E-02 3.52E-02 0.051 8.02E+05 3.48E-02 2.11E+03 8.70E+04

GLM 1.24E+01 1.37E-04 7.31E-07 3.12E-11 0.802 1.67E+08 <2e-16 1.67E+08 2.33E+04

NM
SLR -1.25E+03 6.35E+02 1.21E-03 1.31E-04 0.362 5.17E+03 <2e-16 2.13E+03 4.21E+02

GLM 4.54E+00 6.88E-03 5.83E-07 8.92E-10 0.620 5.11E+05 <2e-16 5.11E+05 7.26E+02

W
SLR -2.61E+06 3.49E+05 2.07E+00 1.09E-01 0.623 2.39E+06 <2e-16 5.74E+03 1.61E+05

GLM 1.51E+01 2.56E-04 -2.65E-08 2.60E-11 0.050 1.87E+07 <2e-16 1.87E+07 2.33E+02
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Correlation analysis 
The linear correlation matrix was generated 
by calculating Pearson’s correlation coeffi-
cients between the dependent and indepen-
dent variables used in the study. A stronger 
correlation was observed among the variables 
associated with the natural moisture bene-
ficiation type. This can be explained by the fact 
that, in this type of beneficiation, the primary 
use of water is for ore processing itself. 
Generally, in natural moisture processing, 
water is used more for particulate control 
than for ore processing. In other words, water 
use is more related to the mining area, roads, 
and piles that need to be sprayed.

Regarding operational water, an R2 

greater than 0.6 was obtained when com-
paring the production unit, suggesting that 
this variable can be used as a dependent 
variable in a model explaining the use of 
operational water in relation to the plant’s 
feed. However, the same correlation is not 
observed for total water withdrawal or 
reuse. This is because total water withdrawal 
is more related to the volume of drawdown 
water than to ore processing itself. In other 
words, most of the water withdrawn is 
returned to the environment without being 
used and is not included in the calculation 
of operational water.

The potential for water reuse is mainly 
associated with units that have dams, i.e., 
units with wet processing. Additionally, reuse 
is more prevalent when there is a robust water 
infrastructure capable of treating and reusing 
non-new water volumes.

Simple Linear Regression Model (SLR) 
and Generalized Linear Regression Model 
(GLM)
Below is the graphical representation of the 
models with the highest R² values (Fig. 1), 
a comprehensive presentation of the results 
(Table 2), and a summary of the results 
analysis.
• Operating Water | Hybrid (H): The SLR 

model is considered the best due to its 
higher R² and lower AIC, despite the GLR 
model having a lower RMSD.

• Operating Water | Natural Moisture 
(NM): The SLR model is the best due to its 
higher R², lower AIC, and lower RMSD.

• Operating Water | Wet (W): The SLR 
model is preferred due to its lower AIC, 
despite the GLR model having a higher R² 
and lower RMSD.

• Total Water Withdrawal | Hybrid (H): The 
SLR model is the best due to its higher R² 
and lower AIC, despite the GLR model 
having a lower RMSD.

• Total Water Withdrawal | Natural Mois-
ture (NM): The GLR model is the best due 
to its higher R² and lower RMSD, despite 
the SLR model having a lower AIC.

• Total Water Withdrawal | Wet (W): The 
GLR model is the best because it has the 
highest R² and lowest RMSD, despite the 
SLR model having a lower AIC.

• Reused Water | Hybrid (H): The GLR 
model is the best because it has the high-
est R² and lowest RMSD, despite the SLR 
model having a lower AIC.

• Reused Water | Natural Moisture (NM): 
The SLR model is the best because it has 
the lowest AIC and RMSD, despite the 
GLR model having a higher R².

• Reused Water | Wet (W): The SLR model 
is the best because it has the highest R² 
and lowest AIC, despite the GLR model 
having a lower RMSD.

Conclusion
Regarding the models studied, it was found 
that simple linear regression (SLR) presents 
the greatest gain when analyzing the 
Operational Water and Reuse coefficient. 
However, for Total Water Withdrawn, the 
generalized linear Poisson regression (GLPR) 
models generally presented smaller errors.

For both Total Water Withdrawn and 
Reuse, a lower correlation was observed with 
the Production Unit variable (Plant feed). 
This is because Total Water Withdrawn is 
more related to the volume of drawdown 
water than to the processing of the ore itself. 
In other words, most of the drawdown volume 
is returned to the environment unused and is 
not part of the calculation of operational water.

The potential for reuse, on the other hand, 
is mainly related to units with dams, i.e., units 
with wet processing. Additionally, it occurs to 
a greater degree when there is a robust water 
infrastructure capable of treating/reusing 
non-new water volumes.
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Finally, the models proposed in this work, 
both the SLR model and the GLPR model, 
present an important technical-scientific 
contribution, as they can be used as useful 
tools for planning and analyzing water use 
in iron ore mining projects. Furthermore, 
there are no studies in the literature that 
estimate water use in relation to production 
by dividing the uses into Operational Water, 
Total Water Withdrawn, and Reuse.
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