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Abstract
This study proposes a novel spectral tracing technique to identify inrush water 
sources in Donghuantuo coal mine. Electrical characteristics of the mine floor were 
analyzed, and spectral data from main aquifers were used to build a source database. 
A CSSOA-optimized random forest model (CSSOA-RF) was developed, achieving 
100% accuracy in tests. The method enables rapid and reliable identification of 
single and mixed water sources, offering technical support for mine safety and water 
hazard prevention. While effective in this relatively simple geological setting, further 
validation is needed for broader application.
Keywords: Identification of Inrush water Sources; Spectral Tracing Technology; 
Chaotic Sparrow Search Optimization Algorithm (CSSOA)
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Introduction 
Traditional methods for studying inrush 
water, which rely on inrush water data and 
physical parameters, have proven effective 
in distinguishing relatively simple water 
sources. However, in cases where the water 
quality is complex and physical parameters 
are similar, or where the water quality of 
different inrush sources is alike, traditional 
methods often fail. This necessitates the use of 
alternative approaches for identifying inrush 
water sources (Sun 1965; Sun and Zheng 
1996). By analysing the basic components 
of aquifers and the chemical composition of 
water samples from inrush points, suitable 
discriminant functions are selected, and 
discriminant formulas are established based 
on specific criteria. These formulas are then 
used to classify unknown samples, employing 
methods such as fuzzy mathematics, grey 
relational analysis, extension identification, 
Geographic Information Systems (GIS), 
support vector machines, and artificial neural 
networks (Panagopoulos et al. 2016; Zhang  
et al. 2019; Ju and Hu 2021).

In recent years, with the rapid 
advancement of computer technology, neural 
networks have gradually been used to identify 
inrush water sources in mines. Common 
artificial neural network models include 
BP neural networks, RBF neural networks, 
ELM, and Elman neural networks, which are 
valuable for accurately identifying multiple 
water sources in mines. Deep learning 
algorithms represent an evolution of artificial 
neural networks, with common approaches 
including deep neural network (DNN) 
analysis, convolutional neural network 
(CNN) analysis, and probabilistic neural 
network (PNN) analysis. Scholars often use 
these methods to determine the origin of 
water samples. Optimization algorithms such 
as genetic algorithms, ant colony algorithms, 
and particle swarm algorithms are frequently 
used for function optimization and com-
binatorial optimization of discriminant 
models. For example, Zhang Di applied a 
genetic algorithm-optimized support vector 
machine to identify inrush water sources, 
which improved the accuracy of parameter 
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selection for support vector machines in 
inrush water source identification. However, 
this method still has drawbacks, such as 
tracing detection times exceeding one 
hour, inability to trace mixed water and its 
proportions, and loss of the optimal rescue 
window post-inrush.

This study aims to explore a new method 
that abandons the traditional approach of 
concentration testing. Instead, it focuses on 
the rapid and accurate identification of inrush 
water sources, proposing a novel method for 
identifying mixed inrush water sources.

Methods 
Study Area and Water Sampling
Donghuantuo mine is located in the city of 
Tangshan in North China’s Hebei Province. The 
southeast wing of the mine extends 13.5 km in 
strike length and 3 km in dip width, while the 
northwest wing stretches 8 km in strike length and 
0.5 km in dip width. The mining area covers 40.5 
km². The terrain within the mining boundary 
is quite flat, with no rivers traversing the area. 
Additionally, there are no surface water systems 
within the Donghuantuo mining boundary, as 
illustrated in Fig. 1. The Donghuantuo mining 
field hosts multiple aquifers, including the 
Quaternary alluvial pore-confined aquifer, the 
Carboniferous–Permian sandstone fissure-
confined aquifer, and the Middle Ordovician 

limestone karst fissure-confined aquifer. These 
aquifers are divided into seven aquifer groups, as 
shown in Fig. 1.

In the preliminary phase of this study 
on spectral tracing of inrush water sources, 
four water samples were collected from 
the primary aquifers of the Donghuantuo 
mine. These samples were taken from the 
12–2–14–1 aquifer, the 5 coal roof aquifer, 
the Quaternary aquifer, and the Ordovician 
limestone aquifer, with each sample 
measuring 1000 mL. Each of the four samples 
was labeled and numbered accordingly.
Transient Electromagnetic Method for  
Inrush Water Sources
In this study, the enhanced TEM67 transient 
electromagnetic method was employed. 
The transmitter used was the TEM57-Mk2, 
augmented with two TEM67 power modules, 
capable of reaching an emission voltage of up 
to 240 V and a maximum emission current of 
28 A. This configuration allowed the use of 
large-sized or large effective area transmitter 
coils, achieving greater exploration depths. 
The table below compares the transmission 
power of the TEM67 and the enhanced 
TEM67. It shows that with a transmission 
frame size of 2000 m × 2000 m (equivalent 
to an exploration depth of 2000 m), the 
magnetic moment M (I × S) of the enhanced 
TEM67 can reach up to 36,363,636 A·m².

Figure 1 Geographical location of the study area.
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Chaos Sparrow Search Optimization  
Algorithm
The sparrow search algorithm (SSA) faces 
challenges such as a tendency to get trapped 
in local optima, a lack of randomness in the 
search process, and slow convergence. To 
address these issues, researchers including 
Xin introduced the tent chaotic sequence and 
Gaussian distribution into the SSA, forming 
the chaos sparrow search optimization 
algorithm (CSSOA). This method uses tent 
chaotic mapping during the population 
initialization stage to maintain a uniform 
distribution of initial individuals. When 
the population exhibits convergence or 
divergence, chaotic perturbations and 
Gaussian mutations are applied to alleviate 
local optima problems. 
Random Forest (RF) Algorithm
Random forest (RF) is an ensemble learning 
algorithm commonly applied to classification 
tasks. It constructs a large number of decision 
trees from training samples to form a 
collective discriminative model, which is then 
used for classifying unknown samples. In 
UV–Visible spectrum classification, RF can 
effectively handle non-linear relationships 
and, through its built-in feature importance 
metrics, select the most informative features 
from large datasets, thus enabling efficient 
processing of high-dimensional spectral data 
while ensuring classification accuracy.

Electrical Characteristics of Water-Rich 
Inrush Water Source
Electrical Characteristics of Water-Rich 
Inrush Water Sources at the 20223 and 
3015 Working Face
The current retreating working faces are 
20223 and 3015. To ensure safe and efficient 
mining, it is necessary to conduct electrical 
resistivity surveys on the roof and floor of 
these working faces to accurately delineate 
their water-bearing properties. The enhanced 
TEM67 transient electromagnetic method 
was used to detect water-rich areas at the 
20223 and 3015 working faces. These surveys 
were complemented by data from four drill 
holes and tunnel exposure data. The water-
bearing characteristics of the roof and floor 
of these working faces are illustrated in the 
following Fig. 2.

According to Fig. 2, a relatively 
low-resistivity zone, designated as DF-
1, was identified within the 0 to 80 m 
vertical detection range of the floor at the 
20223 working face. Analysis of related 
hydrogeological data suggests that this zone 
corresponds to a sandstone fissure-confined 
aquifer. Comparisons with the fault lines 
in the profile and cross-section diagrams 
indicate that this zone is likely connected 
by faults, warranting focused investigation. 
Verification through four drill holes 
confirmed that this is indeed a fault zone.

Figure 2 3D Electrical resistivity tomography (ERT) image of the 20223 working face floor.
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Spectral Characteristics of Various Inrush 
Water Sources
A vacuum filtration apparatus was used to 
filter each water sample solution through a 
0.45 μm PTFE hydrophilic filter membrane 
to remove particulate impurities. The filtered 
water samples were then dispensed into 
sample bottles that had been washed with 
ultrapure water and air-dried. To increase the 
sample size for subsequent machine learning, 
each type of water sample was divided into 
eight sample bottles, resulting in eight sets of 
spectral data for each type of water sample. To 
ensure accuracy, each sample was measured 
three times, and the arithmetic mean of 
these measurements was used as the spectral 
curve data for that sample. For ease of data 
processing and result interpretation, samples 
were assigned hierarchical numbers, e.g., the 
first sample of water sample type 1 was labeled 
1–1, and its two repeated measurements were 
labeled 1–1–1 and 1–1–2, respectively. In 
total, 32 sets of water samples were prepared 
for subsequent classification model training 
in this tracing study.

The prepared samples were subjected 
to spectrophotometric measurement. 
After the instrument completed its self-
check and warm-up, the measurement 
parameters of the spectrophotometer 
were set: the starting wavelength was set 
to 320 nm, the ending wavelength to 650 
nm, and the scanning interval to 1.0 nm. 
Zero-line calibration was then performed. 
Each sample was measured sequentially, 
with three repeated measurements. The 
data were then imported into a computer 
using a USB drive and labeled accordingly. 
After measuring each type of sample, the 
cuvette and other instruments were cleaned 
with ultrapure water. Upon completing the 
measurements of all water samples, the 
repeated measurement data for each sample 
were organized and averaged arithmetically, 
resulting in 32 sets of single-source spectral 
data, as shown in Fig. 3.

Analysis of Fig. 4 reveals significant 
differences in the spectral data of the four 
aquifer types within the measured wavelength 
range of 320–650 nm. The absorbance 

Figure 3 Original spectral data of each aquifer. (a) 12-2~14-1 aquifer water samples, (b) 5 coal roof aquifer 
water samples, (c) quaternary aquifer water samples, (d) Ordovician limestone aquifer water samples.
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that of the single-source samples. W-1 and 
W-3 samples were mixed in ratios of 1:9, 2:8, 
..., 8:2, and 9:1. To ensure sufficient training 
samples for the subsequent tracing model, 10 
samples were prepared for each mixing ratio, 
resulting in a total of 90 mixed spectral data 
entries, as shown in Fig. 4.
Construction and Evaluation of the Tracing 
Identification Model
Using the preprocessed sample data, we 
constructed the CSSOA-RF spectral tracing 
identification model based on the Python 
language. The CSSOA algorithm was 
employed to optimize the key parameters of 
the RF model, achieving adaptive parameter 
optimization for the tracing identification 
model. This phase involved steps such as 
da-taset partitioning, CSSOA algorithm 
optimization, and the construction of the 
CSSOA-RF tracing identification model.

The parameters of the RF model, including 
n_estimators, max_depth, min_samples_leaf, 
and min_samples_split, were optimized based 
on the training set. The CSSOA algorithm’s 
objective function was set to the average 
error obtained from five-fold cross-validation 
on the training set. The population size was 
set to 60, with a discoverer ratio of 0.7 and 
a warning reconnaissance ratio of 0.2. The 
optimization process is illustrated in Fig. 5. 
After 67 iterations, the model achieved the 
minimum average error value of 0.1596, 
which remained stable. Therefore, the 
parameter combination at this point was 
chosen as the optimal parameter values for 
the RF model.

fluctuations for water samples W-1 and W-2 
are minimal, distributed within the range of 0 
to 0.005, with most absorbance values being 
0. Specifically, the absorbance for W-1 drops 
to 0 after 429 nm and remains unchanged, 
while for W-2, it remains at 0 beyond 335 
nm. In contrast, water samples W-3 and W-4 
exhibit significant absorbance variations, 
with both reaching maximum absorbance 
values around 320 nm and then gradually 
decreasing to their minimum values. The 
absorbance range for W-3 is between 0 and 
0.015, while for W-4, it is between 0 and 
0.0325. The absorbance variations for all 
four water samples are concentrated in the 
ultraviolet region (<400 nm), aligning with 
the visual characteristics of colorless and 
transparent water samples.

Water samples W-3 and W-4, which are 
from shallower locations, experience more 
frequent water–rock interactions compared to 
the deeper W-1 and W-2 samples. As a result, 
W-3 and W-4 have higher ion concentrations 
and more complex ionic compositions, leading 
to more pronounced spectral variations. The 
distinct spectral differences among the four 
water samples ensure the accuracy of the 
subsequent machine learning tracing model’s 
classification and identification.

Based on the hydrogeological conditions, 
hydraulic connections, and actual geological 
situations of the four main aquifers sampled 
from the Donghuantuo mine, the study 
investigated the mixing of the Quaternary 
water sample W-3 and the 12–2~14–1 aquifer 
water sample W-1. The preparation method 
for these mixed samples was consistent with 

Figure 4 Original spectral data of different aquifers. Figure 5 CSSOA parameter optimization curve.
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Conclusion
CSSOA-RF Spectral Tracing Identification 
Model: By using the chaos sparrow search 
optimization algorithm (CSSOA) to optimize 
the key parameters of the random forest 
(RF) model, the CSSOA-RF spectral tracing 
identification model was constructed. The 
CSSOA algorithm, through the introduction 
of chaotic perturbations and Gaussian 
mutations, overcame the limitations of 
traditional sparrow search algorithms that 
tend to get trapped in local optima. This 
improved optimization efficiency and 
the model’s global search capability. The 
optimized RF model achieved optimal 
parameter selection, providing reliable 
technical support for tracing identification. 
In the test set, the CSSOA-RF model 
demonstrated excellent classification 
performance, achieving 100% accuracy, with 
only one sample misclassified, indicating the 
model’s outstanding classification ability and 
generalization performance. The confusion 
matrix visualization further confirmed the 
model’s accuracy and stability in practical 
applications. This result validates the 
effectiveness and practicality of spectral 
tracing technology in identifying mine inrush 
water sources.

Innovative and Reliable Method for 
Inrush Water Source Identification: This 
research provides a new, more accurate, 
and reliable method for identifying inrush 

water sources, addressing the shortcomings 
of traditional methods in handling complex 
water quality conditions. The model helps 
in quickly identifying inrush water sources 
in coal-bearing regions of North China, 
reducing disaster losses and enhancing mine 
safety. Additionally, the spectral database and 
CSSOA-RF model developed in this study 
offer valuable references for future related 
research.

Thanks to the National Key Research and 
Development Program 2023YFC30121 for 
funding this study.
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