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Abstract
Acid Mine Drainage (AMD), a significant water pollutant from sulfide mineral oxidation 
in mining areas, generates sulfuric acid and harmful substances. Effective AMD 
management involves careful material handling, treatment, and water management. 
Imaging spectroscopy provides a practical alternative to traditional chemical analysis, 
identifying pyrite oxidation "hot spots" and sulfate mineral formation. This research 
develops robust AMD monitoring systems using machine learning techniques on 
optical multi- and hyperspectral data. We use hyperspectral (PIKA L camera, UAV) 
and multispectral (Sentinel-2, orbital) datasets at the Lítov post-mine dump (Sokolov 
lignite basin, Czech Republic). Validated against XRD mineralogy and Google Earth-
identified hotspots, Radial Basis Function Support Vector Machine (RBF SVM) 
outperforms other ML methods in identifying AMD hot spots and class separation. 
RBF SVM effectively detects AMD discharge and distinguishes mineral mixtures 
(oxy-hydroxides and oxides) using both Pika L and Sentinel-2 data.
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Introduction 
Acid Mine Drainage (AMD) is a significant 
environmental issue that arises when water 
flows over or through sulfur-bearing rocks, 
such as coal or metal ores, which have been 
exposed to air and water during mining 
operations. This exposure leads to the 
oxidation of sulfide minerals, producing 
sulfuric acid. The generated acid reacts 
with surrounding rocks, releasing various 
toxic metals and metalloids, including 
arsenic, lead, and cadmium, into the water. 
Consequently, the discharged water becomes 
highly acidic and contaminated, posing severe 
ecological risks. Acidic water can devastate 
aquatic habitats, harm fish and other aquatic 
organisms, and significantly degrade overall 
water quality. It can also contaminate drinking 
water sources, leading to adverse effects on 
human health, including neurological and 
developmental issues. Addressing AMD 
requires implementing appropriate measures 
during mining operations, such as effective 
handling and treatment of mined materials and 

the establishment of robust water management 
systems. Additionally, post-mining 
remediation techniques, such as neutralizing 
the acid and removing harmful substances, are 
employed to minimize environmental impact 
and restore affected ecosystems.

Recent advancements in remote sensing 
technologies have revolutionized the 
monitoring of AMD. Imaging spectroscopy 
serves as an efficient alternative to traditional 
chemical analyses for mine characterization 
and assessing potential AMD discharge, as well 
as for acid sulfate soil mapping. Spectroscopic 
approach focuses on identifying minerals 
that indicate subaerial oxidation of pyrite 
(e.g., jarosite), often referred to as "hot spots," 
and the subsequent formation of the other 
oxidation products (such as oxy-hydroxides 
and oxides) (Swayze et al. 2000).

To date, effective methods have been 
demonstrated to detect potential AMD 
hotspots using hyperspectral systems deployed 
on Unmanned Aerial Vehicles (UAVs, Flores 
et al. 2021) and aerial platforms (Kopačková 
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2014). Moreover, the availability of current 
satellite systems that provide free multispectral 
data, such as Sentinel-2, and hyperspectral 
imaging data from platforms like EnMap 
and PRISMA, offers novel opportunities for 
monitoring AMD from space. Furthermore, 
a feasibility study by Chalkey et al. (2023) 
highlighted the potential of multi-scale AMD 
monitoring using various remote sensing 
platforms, including UAV-based systems, 
PlanetScope, and Sentinel-2. Their research 
emphasized the importance of integrating 
multiple datasets for comprehensive 
monitoring, which can enhance the accuracy 
and efficiency of AMD detection.

In this study, we aim to advance the 
development of innovative and highly efficient 
AMD monitoring systems by exploring 
the application of Machine Learning (ML) 
techniques to imaging spectral data acquired 
by different platforms, including UAV-based 
hyperspectral data (PIKA L) and multi-
spectral imagery from Sentinel-2 satellite. 
By leveraging these technologies, we aim at 
improving the detection and management 
of AMD, ultimately contributing to more 
sustainable mining practices and better 
protection of the environment.

Test site
The study was conducted at the Lítov post-
mine dump, located in the western part 
of the Sokolov lignite basin in the Czech 
Republic. This site is notable for its inclusion 
in the Czech-Bavarian "Geopark" program, 
which highlights the unique characteristics 
of man-made landscapes. The Lítov dump is 
particularly remarkable due to its highly acidic 
substrates (Kopačková 2014, Kopačková and 

Hladíková 2014), sparse vegetation, and the 
presence of a unique semi-desert environment 
that supports exceptional flora and fauna. 

Remote sensing data
In September 2023, UAV-based hyper-
spectral data were collected using a DJI 
Matrice 600 Pro hexacopter with a Ronin 
MX gimbal. The imaging was performed with 
a Resonon Pika L camera (Fig. 1), covering 
a spectral range of 380–1000 nm across 150 
spectral bands. The camera had a 17 mm focal 
length lens, a 17.6-degree field of view (FOV), 
and an instantaneous field of view (IFOV) of 
0.71 mrad. Data were collected at a constant 
altitude of 120 m and a flight speed of 1.3 
m/s, with flight paths designed using Litchi 
for DJI Mission Hub to run south to north, 
minimizing the Bidirectional Reflectance 
Distribution Function (BRDF) effect. Due 
to the survey area size, data acquisition 
occurred over two days: September 6 and 25, 
2023, between 12:00 and 14:00 to maximize 
sunlight and reduce shadows. Flight lines 
were spaced 15 m apart to ensure a 70% 
overlap between adjacent hyperspectral 
cubes. After acquisition, we used Spectronon 
Pro (v. 3.4.11) for pre-processing, converting 
radiance to reflectance with calibration target 
spectra and georectifying hyperspectral 
cubes using GPS data from the SBG Ellipse 
IMU and the UAV’s onboard GPS. The final 
hyperspectral mosaic achieved a spatial 
resolution of 0.2 m.

Multispectral Sentinel-2 (S-2) data (Fig. 1), 
specifically the 2A surface reflectance 
product, were extracted from the Copernicus 
Data Space Ecosystem. The selected datasets 
were captured under cloud-free conditions in 

Figure 1 Schematic illustrating: high spatial resolution hyperspectral data (400-1000 nm) were acquired via 
UAV using a PIKA L scamera and multispectral Sentinel-2 satellite data, highlighting the spectral range and 
band positions.
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September 2023, ensuring a rain-free period 
of at least two days prior to data acquisition.

In-situ and calibration/validation data
Soil and substrate samples were collected as 
part of long-term research initiatives (2010–
2018). Additional samples were gathered 
during the UAV data acquisition in September 
2023. To resolve the sample mineralogy, a 
Philips X'Pert X-ray Diffractometer (XRD) 
at the Czech Geological Survey was utilized. 
The XRD patterns were generated using 
monochromatic radiation and a graphite 
secondary monochromator. Random patterns 
were collected over an angular range of 2° to 
70° (2θ), with increments of 0.05° (2θ).

Based on detailed sample mineralogy, we 
categorized the samples into three distinct 
classes (Tab. 1, Fig. 2). This classification 
facilitated precise determination of AMD/pH 
by monitoring pH stability in Fe sulfates, oxy-
hydroxides, and oxides (Swayze et al. 2000). We 
selected different scenarios to train/validate 
ML models using high spectral and spatial 
resolution PIKA L data and multispectral 
10-m resolution S-2 data. For both datasets, 
we used sample locations to create regions of 
interest (ROIs) for training (1 sample per class 
with established mineralogy) and validation (5 
samples per class with established mineralogy) 
of the Machine Learning (ML) classifications. 
For high-resolution PIKA L data, mineral 
classes represented areas of a few meters. 
In contrast, for S-2 data, we selected more 
homogenous areas of tens of meters to train 
the models (Fig. 3).

In addition to mineral samples, we visually 
identified AMD hotspots using high-resolution 
orthophotos from Google Earth. While XRD 
analysis wasn't performed on these hotspots, 

we confirmed their AMD-generating activity 
in the field, and this dataset was also used for 
ML classification validation.

Machine Learning (ML) classifications
Four ML classifications (Shirmard et al. 
2022) were tested using the ENVI Machine 
Learning toolbox (v. 5.7) and the Regions 
of Interest (ROIs) outlined in the previous 
section were used as labeled data.

Random Forest (RF) is a machine 
learning technique that uses multiple decision 
trees trained on different subsets of data. It 
helps avoid overfitting and works well with 
large datasets, providing better accuracy and 
robustness to outliers. However, it can be slow 
with large forests, may handle categorical 
variables poorly, and produces larger models. 
Extra Trees (ET), or Extremely Randomized 
Trees, is similar to Random Forest but splits 
nodes randomly without seeking optimal splits. 
This method samples the entire dataset and is 
faster than Random Forest, though it shares 
some disadvantages, such as slow performance 
with large forests and larger model sizes. 
Support Vector Machine (SVM) is a linear 
classifier that finds the optimal hyperplane to 
separate data into classes. It works well when 
data is linearly separable or nearly so. On the 
other hand, Radial Basis Function Support 
Vector Machine RBF SVM is a classification 
algorithm that uses a nonlinear boundary to 
separate classes, making it effective in high-
dimensional spaces. While powerful, it has 
long training times, limiting its use for large 
datasets.

Results
The machine learning (ML) classifications 
were validated using XRD analysis and field-

Figure 2 Lítov dump site - AMD” hot spot” illustrating the field situation and how the mineral classes 1-3 (Tab. 
1) look like (A), detailed photo of the class 1 (jarosite-rich) (B).
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verified AMD hotspots identified visually in 
Google Earth. Using either PIKA L (Tab. 2, 
Fig. 4) or S-2 (Tab. 3, Fig. 5) as input, RBF 
SVM consistently outperformed the other 
tested ML approaches. With high-resolution 
PIKA-L data, RBF SVM correctly identified 
almost all AMD hotspots (6 out of 7 from 
Google Earth) and accurately matched 
all mineral classes with XRD-determined 
mineralogy. The performance of other 
models, in descending order of accuracy, was: 
ET, RF, SVM.

Similar results were observed with S-2 
data (Tab. 3, Fig. 5), where RBF SVM correctly 
mapped most AMD hotspots (13 out of 18 
from Google Earth) and matched 10 out of 20 
mineral compositions determined by XRD. 
As expected, the precision of AMD mapping 
decreased with the lower spatial and spectral 
resolution of the S-2 data. The performance 
order for other models with S-2 data was: RF, 
ET, and SVM.

These initial results indicate that RBF 
SVM excels at detecting AMD discharge 
and distinguishing mineral mixtures in both 
multi- and hyperspectral datasets. Its strength 
likely stems from its ability to effectively define 
class margins using a nonlinear boundary, 
making it a robust kernel within the SVM 
family for high-dimensional data. This allows 

for accurate differentiation of overlapping 
classes. While RF and ET classifiers also 
performed well, they were less accurate in 
differentiating between jarosite (stable under 
acidic pH) and goethite/hematite (indicating 
increasing pH).

Conclusion
The study validated machine learning 
(ML) classifications for identifying Acid 
Mine Drainage (AMD) hotspots using 
XRD analysis and field-verified hotspots 
from Google Earth. The Radial Basis 
Function Support Vector Machine (RBF 
SVM) consistently outperformed other ML 
approaches, accurately identifying nearly all 
AMD hotspots with high-resolution PIKA 
L data (6 out of 7) and matching all mineral 
classes determined by XRD. For Sentinel-2 
(S-2) data, RBF SVM mapped most AMD 
hotspots (13 out of 18) and matched 10 
of 20 mineral compositions from XRD, 
though its precision decreased due to the 
lower resolution of S-2 data. The order of 
performance for other models was Elastic 
Trees (ET), Random Forest (RF), and Support 
Vector Machine (SVM) for PIKA L data, and 
RF, ET, and SVM for S-2 data. uture research 
will aim to establish connections between 
AMD mineralogy and specific pH ranges 

Mineral class AMD minerals
XRD

Other minerals
XRD

Class 1 jarosite, jarosite>>goethite gypsum, kaolite, quartz, mica

Class 2 jarosite, goethite/ goethite, jarosite kaolite, quartz, mica

Class 3  hematite, goethite kaolite, quartz, mica, lignite

Table 1 Mineral classes defined for the Machine Learning classifications and their mineral composition.

Figure 3 Training dataset (ROIs) selected for the PIKA L (A) and Sentinel-2 (B) data classifications.



IMWA 2025 – Time to Come

506506 Valente, T., Mühlbauer, R., Ordóñez, A., Wolkersdorfer, Ch.

and explore machine learning techniques on 
extended multi-temporal datasets, broaden 
training and validation datasets for scalability, 
and assess model transferability to other 
locations, such as the Kirki post-mining site 
in Greece.
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