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Abstract
Mine water quality data is both ubiquitous and highly under-used. Water quality 
data is typically collected on a regular basis starting early in the mine project life 
cycle all the way into post-closure. The data is spatially extensive, multivariate and 
highly dimensional in nature, making it ideal for analysis by modern unsupervised 
methods. Application of unsupervised machine learning methods to water quality 
data in four different parts of the mine project life cycle (baseline and compliance, 
feasibility and permitting, operations and closure) at various project sites indicates 
that the multivariate approach succeeds where traditional methods fail and provides 
considerable additional insight and value to mine operators. The methods are highly 
effective in identifying unique water quality fingerprints, the existence of mine 
influence, and mixing and various reactive processes that occur in water. Example use 
cases are provided herein and demonstrate that the methods have been successfully 
used to reduce water treatment capital and operating expense, prevent and mitigate 
expensive environmental liability and provide significant forecasting insight.
Keywords: Mine water quality, unsupervised machine learning, life cycle water 
management
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Introduction 
Surface water, groundwater, process water and 
other water quality data types are collected 
throughout the mine project life cycle at 
regular, recurring intervals (e.g., MEND 
2009). During early exploration stages, water 
quality is collected for baselining purposes. 
In the mine planning and stage, water quality 
data collected from material characterization 
testing is combined with the baseline data 
to develop models that predict water quality 
associated with future mining activities. 
Prediction outcomes support material and 
water management strategies, as well as 
permitting needs. During operations, water 
quality data is collected to monitor mine 
facility seepage, water treatment performance, 
and compliance at site boundaries. In closure, 
water quality is collected to assess closure 
strategy effectiveness and employ adaptive 
water management strategies. Water quality 
data is ubiquitous through the project life 
cycle and yet remains highly underutilized. 

Employment of multivariate approaches to 
analyzing water quality data remains the 
exception and not the rule.

The abundance of this data is ideally 
suited to using machine learning 
approaches to maximize its value. Water 
quality data is typically collected at regular 
intervals throughout the project life cycle. 
Furthermore, compliance and operational 
requirements dictate that water quality 
be collected at sufficient spatial density 
(MEND 2009). Finally, water quality data 
is multi-dimensional, commonly including 
measurements for 20 to 40 (or more) different 
parameters. The large number of parameters 
makes for a “wide” dataset with considerable 
statistical and geochemical variance, 
which facilitates application of innovative 
unsupervised machine learning methods.

In this study, unsupervised machine 
learning methods are applied to evaluate 
mine water quality during four separate 
stages of the mine life cycle. The names of 
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mine sites, operators, and other location-
specific details are often not divulged as many 
of these analyses have yet to be reviewed by 
respective regulatory stakeholders. As such, 
the unsupervised analyses must, for now, 
remain in the confidential domain (except 
where explicitly stated).

Methods 
All water quality data was analysed using 
Principal Component Analysis (PCA) using 
various Python (Van Rossum et al. 2009) 
libraries including pandas, numpy, pyrolite 
(Williams et al. 2020), sklearn, matplotlib 
and seaborn. Unsupervised multivariate 
data analysis is a typical first step in a 
machine learning project, primarily aimed 
at exploring data structure and identifying 
classes of related samples (often referred 
to as “domains”). Numerous methods exist 
that can be applied to water quality data 
(Huang et al. 2022) which offer various 
strengths and weaknesses, primarily the 
extent to which they preserve local and 
global data structures. PCA is highlighted 
in this study because statistical relationships 
between water quality parameters are easily 
observed on a biplot and add considerable 
interpretability to the results. However, it 
should be noted that other multidimensional 
methods can add considerable insight during 
a multivariate analysis. PACMaP (Pairwise 
Controlled Manifold Approximation and 
Projection; Wang et al. 2021), for instance, 
is recognized to be one of the most optimal 
methods for preserving both local and global 
data structure.

However, PCA is perhaps most widely 
used as its output can add considerable 
elements of explainability to the results, 
which is critical for machine learning work. 
PCA is a dimensionality reduction technique 
that simplifies a dataset to its irreducible, 
basic structure (i.e., principal components) 
in terms of statistical variance. Typically, 
the bulk of the dataset geochemical variance 
is accounted for by principal components 
1 and 2, although for datasets with deeper 
statistical variance, additional components 
can add relevance in an analysis. The biplot 
is a graphic tool that displays how individual 
chemical elements relate to one another in 

principal component space. The position of 
chemical vectors on a biplot indicate whether 
elements are closely related or inversely 
related. Elements with longer vectors exert 
greater control over the overall dataset 
statistical variance. Individual sample factor 
scores can be plotted on the biplot as well 
which helps indicate which samples exert the 
greatest influence on a dataset for a particular 
set of parameters. For groundwater and 
surface water data, when sample points for a 
given location cluster in one area of the biplot, 
it indicates that water quality is not changing 
much over the sampling period. Locations 
with highly variable sample scores over time 
are likely undergoing some chemical changes, 
such as being influenced by mine impacted 
water, mixing with another water, or other 
geochemical reactions.

All water quality datasets required 
data cleaning and transformation prior to 
statistical analysis to address issues such as 
data censoring (detection limits), missing 
values, outliers and implicit numeric 
correlation (e.g., Aitchison, 1982). 

Results
Fig. 1 provides a biplot for water quality 
collected for a large underground mine 
permitting project, where several groundwater 
types are expected to be encountered that 
might require eventual treatment during 
operations. 

The mine will be developed in fractured 
bedrock (Deeper Aquifer) below a thick 
layer of alluvium (Shallow Aquifer). The 
future operator was unable to distinguish 
groundwater quality between the two layers 
using simple time series evaluation and 
requested a more sophisticated analysis. 
Fig. 1 presents results of this analysis and 
shows that unsupervised methods are clearly 
able to distinguish between deeper aquifer 
water, with arsenic and fluoride particularly 
diagnostic, and shallow waters that are 
more defined by their carbonate mineral 
composition, as indicated by the alkalinity, 
calcium and magnesium vectors; these trends 
can be directly related to logged lithology 
and bulk geochemical data for the boreholes. 
PCA results underscore the importance 
of dissolved trace element concentrations 
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in identifying each forensic signature. 
Furthermore, one well (Aquifer Mixing) has 
a very long well screen that is open to both 
the Shallow and Deeper aquifer – PCA clearly 
shows that water quality in this well exhibits 
both aquifer forensic signatures and makes 
it possible to tell during which sampling 
intervals the water carries one signature or 
the other.

Fig. 2 shows the multivariate signature 
of humidity cell test (HCT) data collected 
during the feasibility/permitting stage for the 
proposed Pebble mine in the USA (this mine 
was never permitted). Th is data is publicly 
available through a published EIS.

Th e PCA results displayed on the biplot 
are augmented by multivariate clustering 
(colored panels in background of Fig. 2). 
Multivariate analysis of HCT data has, to 
our knowledge, not been published and yet 
is highly useful. Th is Pebble HCT dataset 
was published and fi rst presented in 2024 

(Meuzelaar and Wyman, 2024) and clearly 
shows geochemical transitions that mine 
waste materials undergo in humidity cells 
over time in the process of becoming acid 
generating. Th e four broad clusters speak to 
this, with cells typically starting out at stable 
pH (Cluster 1), being buff ered by alkalinity 
available in the materials. If the waste materials 
have negligible or low sulfi de content, cell 
leachate quality remains in this cluster for the 
duration of testing. Cells with higher sulfi de, 
however, begin to oxidize over time and enter 
the yellow transition zone characterized by 
the sulfate vector, which represents sulfi de 
oxidation, and the magnesium, calcium and 
barium vectors, which represent buff ering of 
acidity by neutralizing carbonate minerals. 
Once material neutralization potential is 
depleted, the cells start to become acid 
generating and enter the cluster 3 domain on 
the biplot – this transition is typically very 
fast. Th is cluster is defi ned by acidity and all 

Figure 1 Water Quality Signatures of Shallow Alluvial, Deep Bedrock and a Mixed Zone.



IMWA 2025 – Time to Come

624624 Valente, T., Mühlbauer, R., Ordóñez, A., Wolkersdorfer, Ch.

the chalcophile trace metals that are typically 
released from sulfi de minerals and remain 
in solution as the pH lowers. It is important 
to note that changes in HCT chemistry can 
be observed on the biplot that are oft en not 
evident based on leachate pH alone – results 
from unsupervised multivariate analysis can 
serve as an early warning indicator of ARD 
onset, where HCT pH oft en cannot. Finally, 
the iron and aluminum vectors (which plot 
towards the southeast) defi ne cluster 4 and 
are consistent with a humidity cell running 
out of ‘fuel’ (sulfi de content) which eventually 
leads to pH recovery – as pH recovers, iron 
precipitates out fi rst (above pH 3–3.5), 
followed by aluminum (pH 4–4.5).

Fig. 3 illustrates HCT permitting data 
(grey symbols) collected for a confi dential 
mine site with operational seepage data 
(purple symbols). Th e operational seepage 
data is overlain as the larger purple symbols 
in Fig. 3 and represents drainage from a lined 
waste rock facility consisting of materials that 
have long-term ARD potential. Laboratory 
HCT tests indicate that materials have a 
propensity to become acid-generating within 
a decade, however this has not been observed 
at the operational scale.

Th e operator is concerned that their waste 
rock pile will become acidic in the next few 
years and requested development of a seepage 

water quality analysis tool that will predict 
onset of ARD before it happens based on 
monthly monitoring of seepage from the waste 
rock pile. Early warning will give them time 
to respond adaptively and proactively – once 
ARD starts, it is extremely diffi  cult to reverse. 
Because the HCTs represent accelerated 
weathering that generates ARD in the lab, it 
provides an excellent laboratory proxy for the 
geochemical “direction” (on the biplot) that 
seepage water quality is likely to move in if the 
waste rock pile begins to generate acid. Th e 
biplot looks somewhat similar to the previous 
Pebble HCT dataset, except these rocks are 
much more mafi c in nature, so trace metals 
such as copper and nickel tend to predominate 
in leachate chemistry.

Unsupervised analysis of actual seepage 
data, overlain on the permitting-stage 
laboratory data, allows the operator to see, 
on a monthly basis, whether waste rock pile 
seepage is moving closer to acidic conditions 
or further away. Th is allows the operator to 
respond proactively (i.e., add lime to the pile) 
to prevent ARD formation which could result 
in costly compliance penalties.

Fig. 4 shows the final unsupervised 
analysis, representing four decades of 
groundwater and surface water quality 
data being collected at a mine that is going 
into closure. 

Figure 2 Water quality signatures of the Pebble HCT dataset over time (Meuzelaar and Wyman 2024).
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Figure 3 Waste Pile Seepage plotted over HCT data to predict onset of ARD.

Figure 4 PCA biplot clearly delineating natural ARD from MIW.
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The mine has known pre-mining natural 
ARD, as established by field observation. 
Large ferricrete deposits of geologic age, 
speak to a “fossil” acid drainage that has 
been partially neutralized resulting in 
precipitation of iron from solution, and 
co-precipitation of a number of metals. 
Once the mine went into operation, the 
highly reactive waste rock also began to 
generate acidity and MIW. Over time, the 
operator has been unable to separate the 
older, geologic waters from MIW. 

Unsupervised machine learning 
readily differentiates natural ARD from 
MIW, based on the aluminum and copper 
signature of the former, and the fact that 
natural, geologic waters tended to retain 
highly stable water quality over the course 
of mining. MIW, on the other hand, displays 
a highly variable chemical signature over 
time. Pit waters (which plot towards the 
right and northeast corners of the biplot) 
especially, are highly variable over the 
sampling period. This is consistent gradual 
formation of ARD and declining pH over 
time, as indicated by the proton and base 
metal vectors on the biplot. Unsupervised 
analysis is also able to differentiate MIW 
of different types, as tailings seepage and 
background groundwater are defined 
more by alkaline, acid-buffering (calcium) 
and cation exchange (sodium) processes. 
Further unsupervised analysis of just 
the tailings and baseline groundwater 
dataset (not shown here) yields further 
success in delineating tailings MIW from 
natural baseline groundwater; the latter 
often has high sulfate and chlorite due 
to strong evaporative ambient conditions 
and is again not easy to discriminate from 
tailings MIW using traditional, lower-
dimensional analysis methods.

Separation of natural ARD from pit-
generated MIW indicates that all MIW 
is generated within the pit hydraulic 
capture zone. Additional analysis of area 
water quality signatures further indicate 
that waste rock dumps are not generating 
seepage or impacts. The fact that all impacts 
are hydrologically contained changed the 
project closure strategy significantly as the 
initially perceived need for future active 

water treatment is now likely eliminated. 
This is a very significant savings for the 
client, that was made possible by using 
more sophisticated data analysis methods.

Conclusions
Application of unsupervised methods to 
various water quality data types collected in 
four different parts of the mine project life 
cycle indicates that the multivariate approach 
is highly effective in identifying different 
water quality domains, breakthrough of MIW, 
mixing effects and various reactive processes 
that occur in water.

The four use cases have application and 
implications as follows:
• Baseline and compliance: machine learn-

ing methods are applied to separate pre-
mining water quality in different hydro-
stratigraphic units and to detect vertical 
transmissivity between units, providing 
the future operator considerable flexibil-
ity and power in future water treatment 
planning, and also providing significant 
insight to the site hydrogeologic concep-
tual model.

• Feasibility and permitting: unsupervised 
analysis of a large laboratory HCT data-
set provides considerable insight to the 
nature and timing of acid conditions; this 
information is highly valuable in making 
HCT termination decisions as lag time to 
acidity can be challenging to predict using 
standard methods (depletion calcs, moni-
toring changes in leachate pH).

• Operations: comparison of waste rock 
seepage leachate to HCT data gener-
ated during permitting allows for regular 
monitoring of seepage quality and pro-
vides early warning to potential acidic 
conditions, allowing the operator to react 
and respond proactively.

• Closure planning: multivariate analy-
sis of decades of groundwater and sur-
face water quality resulted in successful 
delineation of natural ARD signatures 
from various types of MIW. The ability to 
identify these water types influences the 
long-term closure strategy and is likely 
to result in considerable water treatment 
cost savings.
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