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Abstract
Since the initiation of the Global Industry Standard on Tailings Management 
(GISTM), the adoption by mining companies of advanced monitoring technologies 
has expanded. These systems utilize continuous, near-real-time data from diverse 
sensors, integrating geotechnical, hydrological, and environmental measurements. 
Enhanced by real-time data fusion and advanced statistical analysis, the technology 
enables the detection of subtle structural deviations, improving the accuracy of 
quantitative risk assessments, and reducing false positives. Dynamic, tailored 
response plans are activated based on detected anomalies and forward-looking 
statistical trend analysis, enabling swift, informed decision-making. This approach 
enhances safety and proactive risk management for tailings storage facilities and 
promotes regulatory compliance, operational efficiency, and sustainability.
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Introduction 
Tailings storage facilities (TSFs) have attracted 
increasing attention from international 
investors, insurers and the United Nations 
due to catastrophic failures, prompting 
industry changes. One key outcome was 
the publication of the Global Industry 
Standard on Tailings Management (GISTM), 
which emphasizes integrated performance 
monitoring as a safety measure (GISTM, 
2020). Guidelines for TSF monitoring have 
been established, promoting best practices 
and effective oversight (Zare et al., 2024). As 
a result, new monitoring technologies have 
emerged, including:
• Real-time sensor data collection
• Data integration and management in the 

cloud 
• Real-time statistical analysis
• Anomaly detection
• Machine Learning and AI
These innovations offer benefits like reducing 
false positives, improving risk assessments, 
speeding decision-making, automating 

response plans, enhancing disaster 
preparedness, reducing compliance efforts, 
and cutting operational costs. This paper 
focuses on the value of these technologies 
for safety, monitoring, proactive risk 
management, and automated responses.

Monitoring Techniques for Tailings 
Storage Facilities
Before the widespread availability of sensors 
and Internet of Things (IoT) devices enabling 
automated monitoring, visual assessments 
and manual measurements were the primary 
tools used in surveillance monitoring. These 
processes were manual and time consuming, 
resource-intensive, and introduced the 
possibility of human error. The clear need for 
implementation of more effective monitoring 
systems, coupled with the affordability and 
scalability of IoT-enabled sensor networks, 
has propelled the industry toward digitized 
and automated data collection. 

A systematic review by Cacciuttolo et al. 
(2024) analyzed 52 studies from Web of 
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Science (WoS) and Scopus databases, 
highlighting the widespread use of modern 
technologies. 90% of the papers analysed 
specified the use of real-time automatic 
measurements. 

These new advanced monitoring 
technologies create the potential for a greater 
understanding of critical failure mechanisms, 
or modes, enable early detection of potential 
triggers, and support tailings dam design 
and expansion. By integrating these systems, 
the industry can transition from reactive to 
proactive risk management, ensuring safer 
and more efficient operations.

Automated Data Processing 
The typical monitoring data flow from 
TSF instrumentation is collection, 
transformation, validation, processing, and 
visualisation (Insight Terra, n.d.). Automated 
data collection from TSF instrumentation 
begins with data collection through local 
wireless gateways and networks. This data 
at site level is normalized, and compressed, 
ensuring efficient and secure transmission 
to the cloud via either terrestrial or satellite 
connectivity. Upon reaching the cloud, 
each raw measurement enters a real-time 
data pipeline and undergoes validation and 
transformation against predefined accuracy 
thresholds before processing.

Following validation, the data is enriched 
with installation details and other relevant 
metadata to produce contextualised data 
with the correct engineering units. Raw data 
persists, whilst the calculated engineering 
metrics progress to the next step of real-
time analysis by logic algorithms, which are 
designed to extract contextual information, 
generate insights, identify anomalies, and 
trigger alerts when predefined thresholds 
are exceeded. The processing and analysis of 
each metric in real-time differ substantially 
from retrospective analysis. Analysing the 
data quality through each step reduces the 
potential for false positives. Invalid data is 
stored separately from valid data for further 
analysis. Finally, the processed data is made 
available to other systems and visualisation 
tools, allowing users to create dashboards and 
use the data for informed decision-making 
and processes like root cause analysis.

Advanced Data Processing and Analysis
Historically, each retrieved parameter would 
be evaluated individually to determine any 
structural changes in the TSF. However, 
more recently multi-dimensional data 
sources are being integrated into a single 
framework for improved analysis. As 
demonstrated by Mwanza et al. (2024), the 
combination of geotechnical, environmental, 
and hydrological parameters through digital 
twin simulation and machine learning 
enables a more comprehensive analysis of 
TSF stability. This integration allows for real-
time monitoring as well as predictive insights 
that weren't possible with traditional single-
parameter assessments.

Unified data frameworks derive 
new insights via advanced analytics. 
As the proliferation of IoT sensors and 
instrumentation broadens data availability, 
previously unrecognized correlations 
among parameters become apparent. This 
evolution is demonstrated in contemporary 
TSF monitoring methodologies, where 
enhancements in real-time data acquisition, 
coupled with machine learning (ML), are 
significantly advancing failure prediction 
capabilities. By integrating digital twin 
technology and ML algorithms, TSF 
management is transitioning from 
straightforward parameter monitoring to 
sophisticated predictive analytics. This allows 
the detection of early warning signs across 
various failure modes, thereby enabling more 
proactive risk management and strengthening 
safety measures. This represents a substantial 
progression from traditional monitoring 
techniques, which primarily depended on 
explicit mathematical correlations among 
single parameters.

Fig. 1 on the next page depicts the 
processing steps of a single payload of data 
containing measurement metrics from a 
geotechnical instrument with several data 
points, such as an inclinometer.

The received data payload, which includes 
multiple metric measurements (e.g., from 
a MEMS inclinometer), undergoes the 
following processing steps:
1. Quality assurance: Each metric within a 

data point is initially checked to ensure 
accuracy and reliability.
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2. Metric state analysis: Aft er quality 
assurance, each metric is subjected to state 
logic analysis for detecting abnormalities 
and trends. Th is analysis also updates the 
real-time indicators of the instrument.

3. Extended metric processing: Further 
metrics are generated for each data point 
using a processing script. Th is includes 
querying historical data, enhancing 
the depth of analysis, and conducting 
additional logical validations.

4. Data persistence and rule application: 
Aft er processing, metrics are stored and 
subsequently integrated into a rules 
engine. Th is engine activates safety and 
operational state protocols.

5. Complex scenario execution: Th e 
safety and operational states execute 
comprehensive analyses across all 
metrics and data points, determining the 
appropriate indicators for monitoring 
system integrity and operational safety.

6. Virtual device handoff : Th e payload may 
also be transferred to virtual devices 
for additional processing. Th ese virtual 
devices handle multiple payloads from 
various instruments, each running 
through its own designated processing 
script and generating a new set of metrics.

7. Nested entity triggering: Any nested 
monitoring entities are triggered for 

processing once the initial instrument 
entity completes its safety and operational 
state processing.

8. Data point group invocation: Groups 
of data points can be created from new 
payloads from one or more similar 
instruments, to undergo the same 
process, including safety and operational 
state processing.

Micro Trend Analysis 
Geotechnical instrumentation metrics are 
implicitly slow to change. Th ey require 
long-term analysis to identify macro trends. 
However, by the time these trends become 
clear, addressing their impact may be costly 
and disruptive. Real-time analysis, enabled 
by the availability of real-time data, can be 
implemented to detect micro trends in time-
series data. A trend change can serve as an 
early warning for large incidents. 

Statistical Process Control (SPC) 
approaches can track data fl uctuations 
and identify anomalies that may signal 
abnormal conditions in the tailings structure. 
Th ese methods detect potential dangers by 
analysing characteristics such as tailings 
density, settlement rates, and groundwater 
levels (Harvey, 2023). More particularly, the 
Nelson Rules, fi rst introduced in Lloyd S. 
Nelson’s publication Th e Shewhart Control 

Figure 1 Data Processing Step for a Payload.
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Chart: Tests for Special Causes (Nelson, 
1984), provide a formal framework for finding 
exceptional causes of variation in a process 
through microtrend analysis. The Nelson 
Rules can be used inside SPC to discover 
early warning signs of impending problems. 
This allows stakeholders to be proactive in 
maintaining the safety of tailings facilities.

Limited research has been published on 
the application of these rules in the mining 
industry. Other industries have however 
successfully implemented these practices. 
The paper, "Condition Monitoring of Internal 
Combustion Engines in Thermal Power Plants 
Based on Control Charts and Adapted Nelson 
Rules" (Vilas Boas et al., 2021), is an example 
of a successful application of Nelson Rules. 
Their findings highlight how SPC and Nelson 
Rules can be used for early failure detection, 
predictive maintenance, and decision-
making to prevent costly breakdowns. It is 
reasonable to conclude that this process is 
similarly useful for tailings management.

How these rules can apply to tailings 
management is discussed next, focusing on 
Rules 1 to 4 due to their relevance to sensor 
performance and geotechnical stability.
1. Extreme Deviation (One point is more 

than 3 standard deviations from the 
mean)

 a.  Geotechnical Implications: This may 
indicate sudden instability, such as 
excessive pore pressure.

 b.  Sensor Implications: Possible sensor 
malfunction.

2. Prolonged Bias (9+ consecutive points on 
one side of the mean)

 a.   Geotechnical Implications: Suggests 
a new norm has been reached, 
requiring a recalculation of the mean.

 b.  Sensor Implications: Could indicate 
sensor drift

3. rending Data (6+ consecutive points 
increasing or decreasing)

 a.  Geotechnical Implications: Reflects 
progressive changes such as soil 
consolidation, tailings compaction, 
or embankment settlement.

4. Oscillations (14+ points alternating in 
direction)

 a.  Geotechnical Implications: Unlikely 
to be caused by natural factors

 b.  Sensor Implications: This likely 
points to a faulty sensor.

In addition to the Nelson Rules, various 
statistical techniques can be used to 
analyse trends and determine TSF stability. 
Comparative stability analysis methods, such 
as those described in "Comparative Stability 
Analysis of Tailings Storage Facilities" (Vega 
Vergiagara et al., 2021), offer alternate means 
of monitoring TSF behaviour. Raw data can 
be turned into useful information about the 
sensor network and TSF stability by using 
various statistical methodologies.

To aid in proactive decision-making, an 
automated notification system can be built 
to alert stakeholders when anomalies are 
identified. These notifications then connect 
stakeholders to a dashboard that shows key 
performance indicators (KPIs) relating to TSF 
conditions. Such dashboards enable engineers 
and decision-makers to monitor trends, 
identify abnormalities, and take proactive 
measures. By leveraging real-time analytics 
and SPC techniques, TSF management can 
become more proactive, reducing the risk 
of major incidents and ensuring long-term 
stability.

Creating and Enhancing Response Plans
Trigger Action Response Plans (TARPs) 
can be employed to systematically manage 
risks in TSFs by defining clear actions 
based on predefined safety or operational 
thresholds. Integrating TARPs with real-
time data is essential for enhancing the safety 
and efficiency of TSFs. As highlighted by 
Nunes et al. (2023), TARPs are designed to 
address deviations from normal operating 
conditions through a tiered response system, 
ensuring timely interventions that reduce the 
likelihood of structural failures and restore 
safe conditions.

The Response Plan Data Model in 
Fig. 2 ensures a structured approach to 
risk management by linking safety states, 
responder types, monitoring entities, and 
supporting documentation. Each response 
plan is linked to an Operational/Safety State 
Indicator, defining risk levels, categorized 
by colour levels (e.g., Red for critical 
conditions). It is assigned to a Responder 
Type, which mimics a persona, e.g. Engineer 
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Figure 2 Response Plan Data Model.

of Record (EOR) or Responsible Tailings 
Facility Engineer (RTFE). Th is ensures that 
correct actions are taken by the appropriate 
individuals. Monitoring entities, including 
sensors, interface nodes, physical and virtual 
devices, and data point groups, visualise their 
safety or operational states (Red, Orange, 
Yellow, Blue, Green) in real-time based on the 
predefi ned trigger conditions. Monitoring 
entities activate response plans when 
they detect a specifi c state. Furthermore, 
attachments such as procedural documents 
and schematics are linked to response plans, 
guiding responders.

Fig. 3 illustrates how the above data model 
is used for Monitoring Entity A. If Monitoring 
Entity A triggers a RED safety state, all the 
relevant responders (in this case Responder A 
and B) will be allocated their respective RED 
response plans. If the safety state were to later 
change to YELLOW, diff erent responders 
(e.g. Responders B and C) would be assigned 

their associated YELLOW response plans. 
Th e same goes for the ORANGE, BLUE, 
and GREEN states. Email notifi cations 
and monitoring applications ensure that 
the appropriate details are conveyed to the 
designated responders in real-time.

Figure 3 Trigger Action Response Plan Example.
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Applications, Broader Implications, and 
Industry Transformation
The adoption of advanced monitoring 
technologies in TSFs is reshaping industry 
practices, enhancing safety, sustainability, 
and operational efficiency. The industry is 
making steady progress in integrating these 
technologies, particularly following the 
implementation of the GISTM. 

Despite the clear benefits of these 
advancements, challenges remain regarding 
widespread adoption across all facilities, 
particularly among smaller operators 
facing budget constraints. Nonetheless, the 
industry's commitment to improving safety 
standards through technology is evident as 
it progresses towards more sustainable and 
efficient TSF management solutions.

The future of TSF management lies in the 
implementation of advanced technologies 
such as automated instrumentation, AI, and 
digital twins. Digital twins, which create 
virtual replicas of physical systems, offer 
predictive insights and enhance monitoring 
capabilities. The integration of ML/AI and 
IoT technologies into mining automation 
presents opportunities for improved data 
security, transparency, and operational 
efficiency (Cacciuttolo 2024). 

Conclusions
Advancements in integrated monitoring of 
TSFs have transformed risk management 
into a proactive process. By leveraging near 
real-time data, advanced SPC, and automated 
response plans, the industry can detect 
anomalies earlier, reduce false positives, and 
implement dynamic mitigation strategies. 
The implementation of multi-dimensional 
data analysis and ML/AI-driven insights that 
are integrated into the overall surveillance and 
performance monitoring processes enhances 
TSF safety and optimizes response planning, 
ensuring compliance with evolving industry 
standards such as the GISTM. Beyond safety 
improvements, these innovations offer 
cost savings, environmental benefits, and 
operational efficiencies that drive broader 
industry transformation. As technology 
advances, the incorporation of predictive 
analytics, ML/AI, and digital twin modelling 
will further refine TSF management practices, 

paving the way for a safer, more sustainable 
future in the mining sector.

Acknowledgements
The authors would like to thank Etienne Bruwer, Director 
of Solution Engineering at Insight Terra, for his valuable 
contributions and insights. His expertise and support were 
instrumental in refining key technical aspects of this paper.

References
Cacciuttolo C, Guzmán V, Catriñir P, Atencio E (2024) 

Sensor Technologies for Safety Monitoring in Mine 
Tailings Storage Facilities: Solutions in the Industry 
4.0 Era. Minerals 14(5):446. https://doi.org/10.3390/
min14050446

Global Industry Standard on Tailings Management. (2020) 
Global industry standard on tailings management. 
Retrieved from https://globaltailingsreview.org/global-
industry-standard/

Harvey D (2023) Data management and insights for 
effective tailings storage facility management. SAIMM 
Conference Proceedings. Retrieved from https://www.
saimm.co.za/Conferences/files/tailings-2023/21%20
585_Harvey.pdf

Insight Terra. (n.d.). How it works. Retrieved January 29, 
2025, from https://www.insightterra.com/platform/
how-it-works

Mwanza J, Mashumba P, Telukdarie A (2024) A framework 
for monitoring stability of tailings dams in real-time 
using digital twin simulation and machine learning. 
Procedia Computer Science 232:2279–2288. https://
doi.org/10.1016/j.procs.2024.02.047

Nelson, L. S. (1984). The Shewhart control chart: Tests for 
special causes. Journal of Quality Technology, 16(4), 238-239.

Nunes AJC, Cavalieri F, dos Santos Lopes HL, Lima AP, 
Rodrigues RS (2023) Deterministic and statistical 
analysis in the definition of triggered action response 
plans in tailings dams. In Proceedings of Tailings and 
Mine Waste 2023. Vancouver, Canada: University of 
British Columbia. https://doi.org/10.14288/1.0438144

Vergiagara V, Yulianto MR, Anggara R, Saptono S (2021) 
Comparative stability analysis of tailings storage 
facilities. AIP Conference Proceedings, 2363, 030014. 
https://doi.org/10.1063/5.0061808

Vilas Boas FM, Borges-da-Silva LE, Villa-Nova HF, 
Bonaldi EL, Lacerda Oliveira LE, Lambert-Torres G, 
Assuncao FO, Costa CIA, Campos MM, Sant’Ana WC, 
Lacerda J, Marques da Silva Junior JL, Gomes da Silva E 
(2021) "Condition monitoring of internal combustion 
engines in thermal power plants based on control 
charts and adapted Nelson rules," Energies 14(16): 
4924. https://doi.org/10.3390/en14164924

Zare M, Nasategay F, Gomez JA, Moayedi Far A, Sattarvand 
J (2024) A Review of Tailings Dam Safety Monitoring 
Guidelines and Systems. Minerals 14(6):551. https://
doi.org/10.3390/min14060551




